
CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 1

Database Management Systems
Session 5

Instructor: Vinnie Costa
vcosta@optonline.net

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 2

Term Paper
Due Saturday, Oct 8
Should be about 3-4 pages (9 or 10 font)
Some people still have not submitted topics

Homework
Read Chapter Three
No exercises for next class; MidTerm instead
Any Questions?

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 3

Homework
Install PHP On Your System
Install MySQL
Create, Delete, Modify Tables
Insert, Modify, Delete Data Into Tables
Play with MySQL
Any Trouble?

MidTerm Exam
Due today, September 17
No late submissions

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 4

Oracle Buys Siebel

September 12, 2005 – Oracle will
acquire customer-service software
specialist Siebel Systems in a deal
worth $5.85 billion. “In a single
step, Oracle becomes the No. 1
CRM applications company in the
world,” said Oracle CEO Larry
Ellison.
Oracle was founded in 1977 by
Larry Ellison who has a net worth
of over $18 Billion, making him
the 9th richest man in the world!

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 5

Relational Algebra

Chapter 4, Part A

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 6

Relational Query Languages
Query languages (QL) - specialized languages to
manipulate and retrieve data from a database
Relational model supports simple, powerful QLs:

Strong formal foundation based on set theory and logic
Allows for much optimization

Query Languages are programming languages!
QLs not intended to be used for complex calculations.
QLs support easy, efficient access to large data sets.

In the summer of 1979, Relational Software, Inc. (now
Oracle Corporation) introduced the first commercially
available implementation of SQL (beat IBM to market by two
years) by releasing their first commercial RDBMS

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 7

Formal Relational Query Languages

Two mathematical Query Languages form
the basis for “real” languages (e.g. SQL), and
for implementation:

Relational Algebra - More operational, very
useful for representing execution plans
(procedural)
Relational Calculus - Lets users describe what
they want, rather than how to compute it. (Non-
operational, declarative)

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 8

Preliminaries

A query is applied to relation instances, and the
result of a query is also a relation instance.

Schemas of input relations for a query are fixed (but
query will run regardless of instance!)
The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.

Positional vs. named-field notation:
Positional notation easier for formal definitions,
named-field notation more readable.
Both used in SQL

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 9

Example Instances

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1

S2

Sailors (S1, S2) and
Reserves (R1) relations for
our examples
We’ll use positional or
named field notation,
assume that names of
fields in query results are
`inherited’ from names of
fields in query input
relations

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 10

Relational Algebra
Basic operations:

Selection () Selects a subset of rows from relation
Projection () Deletes unwanted columns from relation
Cross-product () Allows us to combine two relations
Set-difference () Tuples in reln. 1, but not in reln. 2
Union () Tuples in reln. 1 and in reln. 2

Additional operations:
Intersection, join, division, renaming: Not essential, but
(very!) useful

Since each operation returns a relation, operations can be
composed! (Algebra is “closed”)

σ
π

−
×

U

σ Sigma
π Pi

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 11

Selection

σ rating S>8 2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σsname rating rating S, (())
>8 2

Selects rows that satisfy
selection condition
No duplicates in result!
(Why?)
Schema of result
identical to schema of
(only) input relation
Result relation can be
the input for another
relational algebra
operation! (Operator
composition)

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 12

Projection
sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

π sname rating S, ()2

age
35.0
55.5

πage S()2

Deletes attributes that are not in
projection list
Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the (only) input relation
Projection operator has to
eliminate duplicates (Why?)

Note: real systems typically don’t do
duplicate elimination unless the user
explicitly asks for it. (Why not?)

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 13

Union, Intersection, Set-Difference

All of these operations take
two input relations, which
must be union-compatible:

Same number of fields.
Corresponding fields
have the same type.

The schema of result is
identical to schema of input

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age
22 dustin 7 45.0

S S1 2−

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 14

Cross-Product
Each row of S1 is paired with each row of R1.
Result schema has one field per field of S1 and R1,
with field names `inherited’ if possible.

Conflict: Both S1 and R1 have a field called sid.

ρ ((,),)C sid sid S R1 1 5 2 1 1→ → ×

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Renaming operator:

ρ Rho

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 15

Joins
Condition Join:

Result schema same as that of cross-product.
Fewer tuples than cross-product, might be
able to compute more efficiently

R c S c R S>< = ×σ ()

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S RS sid R sid1 11 1>< . .<

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 16

Joins

Equi-Join: A special case of condition join where
the condition c contains only equalities.

Result schema similar to cross-product, but only
one copy of fields for which equality is specified.
Natural Join: Equijoin on all common fields.

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S Rsid1 1><

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 17

Division
Not supported as a primitive operator, but useful for
expressing queries like:

Find sailors who have reserved all boats.
Let A have 2 fields, x and y; B have only field y:

A/B =
i.e., A/B contains all x tuples (sailors) such that for every y
tuple (boat) in B, there is an xy tuple in A.
Or: If the set of y values (boats) associated with an x value
(sailor) in A contains all y values in B, the x value is in A/B.

In general, x and y can be any lists of fields; y is the
list of fields in B, and x y is the list of fields of A.

{ }x x y A y B| ,∃ ∈ ∀ ∈

∪

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 18

Examples of Division A/B

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 19

Find names of sailors who’ve reserved boat #103

Solution 1:))Re((103 Sailorsservesbidsname <>
=

σπ

Solution 2: ρ σ(, Re)Temp servesbid1 103=

ρ (,)Temp Temp Sailors2 1><

π sname Temp()2

Solution 3: π σsname bid serves Sailors((Re))
=103 ><

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 20

Find names of sailors who’ve reserved a red boat

Information about boat color only available in
Boats; so need an extra join:

π σsname color red Boats serves Sailors((' ') Re)
=

>< ><

A more efficient solution:

π π π σsname sid bid color red Boats s Sailors(((' ') Re))
=

>< ><

A query optimizer can find this, given the first solution!

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 21

Find sailors who’ve reserved a red or a green boat

Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

ρ σ(, (' ' ' '))Tempboats color red color green Boats
= ∨ =

π sname Tempboats serves Sailors(Re)>< ><

What happens if is replaced by in this query?∨ ∧

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 22

Find sailors who’ve reserved a red and a green boat

Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

ρ π σ(, ((' ') Re))Tempred sid color red Boats serves
=

><

π sname Tempred Tempgreen Sailors(())∩ ><

ρ π σ(, ((' ') Re))Tempgreen sid color green Boats serves
=

><

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 23

Find the names of sailors who’ve reserved all boats

Uses division; schemas of the input relations
to / must be carefully chosen:

ρ π π(, (, Re) / ())Tempsids sid bid serves bid Boats

π sname Tempsids Sailors()><

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 24

Summary

The relational model has rigorously defined
query languages that are simple and
powerful
Relational algebra is more operational;
useful as internal representation for query
evaluation plans
Several ways of expressing a given query; a
query optimizer should choose the most
efficient version.

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 25

Relational Calculus

Comes in two flavors: Tuple relational calculus (TRC) and
Domain relational calculus (DRC).
Calculus has variables, constants, comparison ops, logical
connectives and quantifiers.

TRC - Variables range over (i.e., get bound to) tuples.
DRC - Variables range over domain elements (= field values).
Both TRC and DRC are simple subsets of first-order logic.

Expressions in the calculus are called formulas. An answer
row is essentially an assignment of constants to variables that
make the formula evaluate to true

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 26

Domain Relational Calculus

Query has the form:
x x xn p x x xn1 2 1 2, ,..., | , ,...,

Answer includes all tuples that
make the formula be true.

x x xn1 2, ,...,
p x x xn1 2, ,...,

Formula is recursively defined, starting with
simple atomic formulas (getting rows from
relations or making comparisons of values),
and building bigger and better formulas using
the logical connectives.

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 27

Summary

Relational calculus is non-operational, and
users define queries in terms of what they
want, not in terms of how to compute it.
(Declarative)
Algebra and safe calculus have same
expressive power, leading to the notion of
relational completeness.

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 28

SQL: Queries, Constraints,
Triggers

Chapter 5

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 29

Example Instances

We will use these
instances of the Sailors
and Reserves relations
in our examples

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

R1
S1

S2

sid bid day
22 101 10/10/96
58 103 11/12/96

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 30

Basic SQL Query

select-list - A list of attributes of relations in select-list
from-list - A list of relation names (possibly with a range-
variable after each name).
qualification - Comparisons (Attr op const or Attr1 op
Attr2, where op is one of) combined
using AND, OR and NOT.
DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification

< > = ≤ ≥ ≠, , , , ,

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 31

Conceptual Evaluation Strategy

Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:

Compute the cross-product of from-list
Discard resulting tuples if they fail qualifications
Delete attributes that are not in select-list
If DISTINCT is specified, eliminate duplicate rows

This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 32

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Text p.137

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 33

A Note on Range Variables

Really needed only if the same relation appears
twice in the FROM clause. The previous query can
also be written as:
SELECT sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid AND bid=103

It is good style,
however, to use
range variables
always!OR

))Re((103 Sailorsservesbidsname <>
=

σπ

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 34

Find sailors who’ve reserved at least one boat

Would adding DISTINCT to this query make a
difference?
What is the effect of replacing S.sid by S.sname in the
SELECT clause? Would adding DISTINCT to this
variant of the query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

)Re(servesSailorssname <>π

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 35

Expressions and Strings

Illustrates use of arithmetic expressions and string pattern
matching: Find triples (of ages of sailors and two fields defined by
expressions) for sailors whose names begin and end with B and
contain at least three characters
AS and = are two ways to name fields in result
LIKE is used for pattern matching. `_’ stands for any one
character and `%’ stands for 0 or more arbitrary characters
`Bob’ is the only pattern match

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 36

Find sid’s of sailors who’ve reserved a red or a green boat

If we replace OR by AND in the first version, what do
we get?

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
AND (B.color=‘red’ AND B.color=‘green’)

Same boat cannot have two colors. Always returns an
empty answer set!

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 37

Find sid’s of sailors who’ve reserved a red or a green boat

UNION - Can be used to compute the union of any two
union-compatible sets of tuples (which are themselves
the result of SQL queries).

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

This query says that we want the union of the set of
sailors who have reserved red boats and the set of
sailors who have reserved green boats

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 38

Find sid’s of sailors who’ve reserved a red and a green boat

INTERSECT - Can be used to compute the union of
any two union-compatible sets of tuples

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

This query has a subtle bug if we select sname instead of
sid. Sname is not a key and we have two Horatio’s, each
with a different color boat!

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 39

Find sid’s of sailors who’ve reserved red boats but not
green boats

EXCEPT - Can be used to compute set-difference of
any two union-compatible sets of tuples

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
EXCEPT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 40

Nested Queries

A very powerful feature of SQL: a WHERE clause can itself
contain an SQL query! (Actually, so can FROM and HAVING
clauses.)
To find sailors who’ve not reserved #103, use NOT IN.
To understand semantics of nested queries, think of a nested
loops evaluation: For each Sailors tuple, check the qualification by
computing the subquery.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 41

Multiply Nested Queries

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid IN (SELECT B.bid

FROM Boats B
WHERE B.color = ‘red’)

Find names of sailors who have reserved a red boat

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 42

Nested Queries with Correlation

EXISTS is another set comparison operator, like IN.
If UNIQUE is used, and * is replaced by R.bid, it finds sailors
with at most one reservation for boat #103. (UNIQUE checks
for duplicate tuples; * denotes all attributes)
In general, subquery must be re-computed for each Sailors
tuple.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103

correlation

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 43

More on Set-Comparison Operators

We’ve already seen IN, EXISTS and UNIQUE. Can also use
NOT IN, NOT EXISTS and NOT UNIQUE
Also available: op ANY, op ALL, op IN where op
is one of { }
Find sailors whose rating is greater than that of some sailor called
Horatio

> < = ≥ ≤ ≠, , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 44

Rewriting INTERSECT Queries Using IN

Similarly, EXCEPT queries re-written using NOT IN
To find names (not sid’s) of Sailors who’ve reserved both red
and green boats, just replace S.sid by S.sname in SELECT clause.

Find sid’s of sailors who’ve reserved both a red and a green boat

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=‘green’)

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 45

Division in SQL

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ((SELECT B.bid

FROM Boats B)
EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid=S.sid))

Find sailors who’ve reserved all boats
(1)

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 46

Division in SQL

Let’s do it the hard way, without EXCEPT:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...
there is no boat B without ...

a Reserves row showing S reserved B

(2)

Find sailors who’ve reserved all boats

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 47

Aggregate Operators
Significant extension of
relational algebra

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

single column

SELECT COUNT(DISTINCT S.sname)
FROM Sailors S

SELECT COUNT (*)
FROM Sailors S

Count the number of sailors

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

Find the average age of sailors
with a rating of 10

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX(S2.age)

FROM Sailors S2)

Find the name and age of the oldest sailor

Count the number of different sailor names

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 48

Find name and age of the oldest sailor(s)

The first query is illegal!
(We’ll look into the reason
a bit later, when we discuss
GROUP BY)

The third query is
equivalent to the second
query, and is allowed in
the SQL/92 standard, but
is not supported in some
systems

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2)
= S.age

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX(S2.age)

FROM Sailors S2)

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 49

Motivation for Grouping
So far, we’ve applied aggregate operators to all
(qualifying) rows. Sometimes, we want to apply
them to each of several groups of rows
Consider: Find the age of the youngest sailor for each
rating level

In general, we don’t know how many rating levels
exist, and what the rating values for these levels are!
Suppose we know that rating values go from 1 to 10;
we can write 10 queries that look like this:

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 50

Queries With GROUP BY and HAVING

The select-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).

The attribute list (i) must be a subset of grouping-list.
Intuitively, each answer row corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 51

Conceptual Evaluation
The cross-product of from-list is computed, rows that fail
qualification are discarded, `unnecessary’ fields are deleted,
and the remaining rows are partitioned into groups by the
value of attributes in grouping-list
The group-qualification is then applied to eliminate some
groups. Expressions in group-qualification must have a single
value per group

In effect, an attribute in group-qualification that is not an
argument of an aggregate op also appears in grouping-list.

One answer row is generated per qualifying group

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 52

Find age of the youngest sailor with age 18,
for each rating with at least 2 such sailors

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
29 brutus 1 33.0
31 lubber 8 55.5
32 andy 8 25.5
58 rusty 10 35.0
64 horatio 7 35.0
71 zorba 10 16.0
74 horatio 9 35.0
85 art 3 25.5
95 bob 3 63.5
96 frodo 3 25.5

Answer relation:

≥

Sailors instance:

rating minage
3 25.5
7 35.0
8 25.5

We apply the WHERE clause

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 53

Find age of the youngest sailor with age 18,
for each rating with at least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

≥

rating minage
3 25.5
7 35.0
8 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0

10 35.0

dups

eliminated
unwanted
columns

sort table by
groups

apply
HAVING
clause

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 54

Find age of the youngest sailor with age 18, for each rating
with at least 2 such sailors and with every sailor under 60.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

≥

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0

10 35.0

rating minage
7 35.0
8 25.5

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

What is the result of
changing EVERY to
ANY?

introduced
in SQL:1999

this group
dropped

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 55

Find age of the youngest sailor with age 18, for
each rating with at least 2 sailors between 18 and 60.

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18 AND S.age <= 60
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
29 brutus 1 33.0
31 lubber 8 55.5
32 andy 8 25.5
58 rusty 10 35.0
64 horatio 7 35.0
71 zorba 10 16.0
74 horatio 9 35.0
85 art 3 25.5
95 bob 3 63.5
96 frodo 3 25.5

Answer relation:

≥

Sailors instance:

rating minage
3 25.5
7 35.0
8 25.5

this group
still has two
row that meet
qualification

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 56

Null Values

Field values in a row are sometimes unknown (e.g., a
rating has not been assigned) or inapplicable (e.g., no
spouse’s name).

SQL provides a special value null for such situations.
The presence of null complicates many issues. e.g.:

Special operators needed to check if value is/is not null.
Is rating>8 true or false when rating is equal to null?
What about AND, OR and NOT connectives?
We need a 3-valued logic (true, false and unknown).
Meaning of constructs must be defined carefully. (e.g.,
WHERE clause eliminates rows that don’t evaluate to true.)
New operators (in particular, outer joins) possible/needed.

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 57

Triggers

Trigger - procedure that starts automatically
if specified changes occur to the DBMS
Three parts:

Event (activates the trigger)
Condition (tests whether the triggers should run)
Action (what happens if the trigger runs)

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 58

Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON Sailors

REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT

INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 59

Summary

SQL was an important factor in the early acceptance
of the relational model; more natural than earlier,
procedural query languages
Relationally complete; in fact, significantly more
expressive power than relational algebra
Even queries that can be expressed in RA can often
be expressed more naturally in SQL
Many alternative ways to write a query; optimizer
should look for most efficient evaluation plan.

In practice, users need to be aware of how queries are
optimized and evaluated for best results.

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 60

Summary (Contd.)

NULL for unknown field values brings many
complications
Triggers respond to changes in the database

CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University 61

Homework
Read Chapters Four and Five
Only study topics covered in class

