
1Hofstra University, CSC00510/23/06

Chapter 8
(Part 1)

High Level Programming Languages

2Hofstra University, CSC00510/23/06

Communication

Application

Operating System

Programming

Hardware

Information

Layers of a Computing System

3Hofstra University, CSC00510/23/06

Chapter Goals

Describe the translation process and
distinguish between assembly, compilation,
interpretation, and execution

Name four distinct programming paradigms
and name a language characteristic of each

Describe the following constructs: stream input
and output, selection, looping, and
subprograms

Construct Boolean expressions and describe
how they are used to alter the flow of control of
an algorithm

. . . Some Hands-On

4Hofstra University, CSC00510/23/06

Compilers

• Compiler A program that translates a
high-level language program into
machine code

High-level languages provide a richer set
of instructions that makes the
programmer’s life even easier

5Hofstra University, CSC00510/23/06

Compilers

Figure 8.1 Compilation process

6Hofstra University, CSC00510/23/06

Interpreters

• Interpreter A translating program that
translates and executes the statements
in sequence

Unlike an assembler or compiler which
produce machine code as output, which is
then executed in a separate step

An interpreter translates a statement and
then immediately executes the statement

Interpreters can be viewed as simulators

7Hofstra University, CSC00510/23/06

Java

Introduced in 1996 and swept the
computing community by storm

Portability was of primary importance

Java is compiled into a standard machine
language called Bytecode

A software interpreter called the JVM
(Java Virtual Machine) takes the
Bytecode program and executes it

8Hofstra University, CSC00510/23/06

Programming Language
Paradigms

What is a paradigm?

A set of assumptions, concepts, values,
and practices that constitute a way of
viewing reality

9Hofstra University, CSC00510/23/06

Programming Language
Paradigms

Figure 8.2
Portability provided
by standardized
languages versus
interpretation by
Bytecode

10Hofstra University, CSC00510/23/06

Programming Language
Paradigms

Figure 8.2
Portability provided
by standardized
languages versus
interpretation by
Bytecode

11Hofstra University, CSC00510/23/06

Programming Language
Paradigms

Imperative or procedural model
FORTRAN, COBOL, BASIC, C, Pascal,
Ada, and C++

Functional model
LISP, Scheme (a derivative of LISP), and ML

12Hofstra University, CSC00510/23/06

Programming Language
Paradigms

Logic programming
PROLOG

Object-oriented paradigm
SIMULA and Smalltalk
C++ is as an imperative language with some
object-oriented features
Java is an object-oriented language with
some imperative features

13Hofstra University, CSC00510/23/06

Functionality of Imperative
Languages

• Sequence Executing statements in sequence
until an instruction is encountered that
changes this sequencing

• Selection Deciding which action to take

• Iteration (looping) Repeating an action

Both selection and iteration require the use of a
Boolean expression

14Hofstra University, CSC00510/23/06

Boolean Expressions

• Boolean expression A sequence of
identifiers, separated by compatible operators,
that evaluates to true or false

Boolean expression can be

A Boolean variable

An arithmetic expression followed by a relational
operator followed by an arithmetic expression

A Boolean expression followed by a Boolean
operator followed by a Boolean expression

15Hofstra University, CSC00510/23/06

Boolean Expressions

• Variable A location in memory that is
referenced by an identifier that contains
a data value

Thus, a Boolean variable is a location in
memory that can contain either true or false

16Hofstra University, CSC00510/23/06

Boolean Expressions

A relational
operator between
two arithmetic
expressions is
asking if the
relationship exists
between the two
expressions

For example,
xValue < yValue

17Hofstra University, CSC00510/23/06

Strong Typing

• Strong typing The requirement that
only a value of the proper type can be
stored into a variable

• Data type A description of the set of
values and the basic set of operations
that can be applied to values of the type

18Hofstra University, CSC00510/23/06

Data Types

Integer numbers

Real numbers

Characters

Boolean values

Strings

19Hofstra University, CSC00510/23/06

Integers

The range varies depending upon how
many bytes are assigned to represent an
integer value

Some high-level languages provide
several integer types of different sizes

Operations that can be applied to
integers are the standard arithmetic and
relational operations

20Hofstra University, CSC00510/23/06

Reals

Like the integer data type, the range
varies depending on the number of bytes
assigned to represent a real number

Many high-level languages have two
sizes of real numbers

The operations that can be applied to
real numbers are the same as those that
can be applied to integer numbers

21Hofstra University, CSC00510/23/06

Characters

It takes one byte to represent characters
in the ASCII character set

Two bytes to represent characters in the
Unicode character set

Our English alphabet is represented in
ASCII, which is a subset of Unicode

22Hofstra University, CSC00510/23/06

Characters

Applying arithmetic operations to
characters doesn’t make much sense

Comparing characters does make sense,
so the relational operators can be applied
to characters

The meaning of “less than” and “greater
than” when applied to characters is
“comes before” and “comes after” in the
character set

23Hofstra University, CSC00510/23/06

Boolean

The Boolean data type consists of two
values: true and false

Not all high-level languages support the
Boolean data type

If a language does not, then you can
simulate Boolean values by saying that
the Boolean value true is represented by
1 and false is represented by 0

24Hofstra University, CSC00510/23/06

Strings

A string is a sequence of characters considered
as one data value

For example: “This is a string.”
Containing 17 characters: one uppercase letter, 12
lowercase letters, three blanks, and a period

The operations defined on strings vary from
language to language

They include concatenation of strings and
comparison of strings in terms of lexicographic order

25Hofstra University, CSC00510/23/06

Declarations

• Declaration A statement that associates
an identifier with a variable, an action, or
some other entity within the language
that can be given a name so that the
programmer can refer to that item by
name

26Hofstra University, CSC00510/23/06

Declarations

27Hofstra University, CSC00510/23/06

Declarations

• Reserved word A word in a language
that has special meaning

Case-sensitive Uppercase and
lowercase letters are considered the
same

28Hofstra University, CSC00510/23/06

Assignment statement

• Assignment statement An action
statement (not a declaration) that says
to evaluate the expression on the right-
hand side of the symbol and store that
value into the place named on the left-
hand side

• Named constant A location in memory,
referenced by an identifier, that contains
a data value that cannot be changed

29Hofstra University, CSC00510/23/06

Assignment Statement

8-29

30Hofstra University, CSC00510/23/06

Input/Output Structures

In our pseudocode algorithms we have
used the expressions Read and Write

High-level languages view input data as a
stream of characters divided into lines

31Hofstra University, CSC00510/23/06

Input/Output Structures
The key to the processing is in the data
type that determines how characters are
to be converted to a bit pattern (input)
and how a bit pattern is to be converted
to characters (output)

We do not give examples of input/output
statements because the syntax is often
quite complex and differs so widely
among high-level languages

32Hofstra University, CSC00510/23/06

A Little Hands On

33Hofstra University, CSC00510/23/06

Hello World

<html>
<body>
<script type="text/javascript">
document.write("Hello World!")
</script>
</body>
</html>

34Hofstra University, CSC00510/23/06

An External JavaScript

<html>
<head>
<script src="xxx.js"></script>
</head>
<body>
</body>
</html>

35Hofstra University, CSC00510/23/06

Declaring Variables

You can create a variable with the var statement:

var strname = some value

You can also create a variable without the var statement:

strname = some value

You can assign a value to a variable like this:

var strname = "Hello World!"

Or like this:

strname = "Hello World!"

36Hofstra University, CSC00510/23/06

Control Statements

<script type="text/javascript">
//Write a "Good morning" greeting if
//the time is less than 10

var d=new Date()
var time=d.getHours()

if (time<10)
{
document.write("Good morning")
}
</script>

comment

declare

control

37Hofstra University, CSC00510/23/06

Homework

Read Chapter Eight, Sections 8.1 – 8.3
(Up to Control Structures)
“PLAY” with JavaScript
http://www.w3schools.com/js/js_howto.asp

http://www.w3schools.com/js/js_howto.asp

38Hofstra University, CSC00510/23/06

Mid-Term

Due Back: Tonight
No Lateness!!!

39Hofstra University, CSC00510/23/06

No Class

There will be no class on Monday, 10/30

40Hofstra University, CSC00510/23/06

Good Night

