
### **Chapter 12**

### **Information Systems**



# **Chapter Goals**

- Define the role of general information systems
- Explain how spreadsheets are organized
- Create spreadsheets for basic analysis of data
- Describe the elements of a database management system
- Describe the organization of a relational database
- Establish relationships among elements in a database
- Write basic SQL statements
- Describe an entity-relationship diagram

# **Managing Information**

- Information system Software that helps us organize and analyze data
  - Flexible application software tools that allow the user to dictate and manage the organization of data, and that have basic processing capabilities to analyze the data in various ways
  - Two of the most popular general application information systems are *electronic spreadsheets* and *database management systems*

# **Spreadsheets**

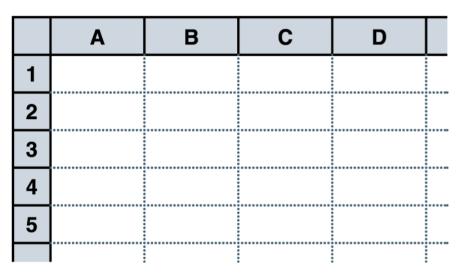
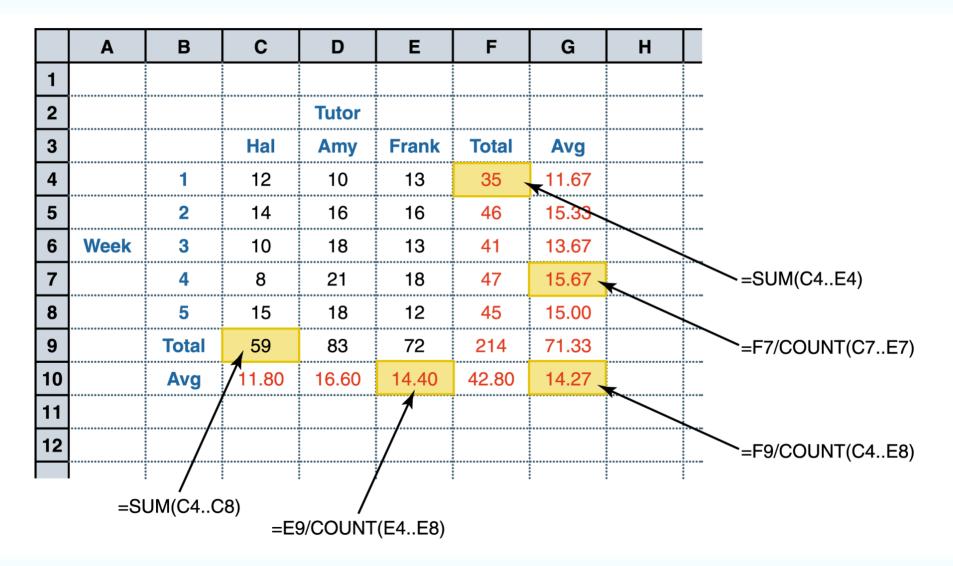



Figure 12.1 A spreadsheet, made up of a grid of labeled cells

- Spreadsheet A software application that allows the user to organize and analyze data using a grid of labeled cells
  - A cell can contain data or a formula that is used to calculate a value
  - Data stored in a cell can be text, numbers, or "special" data such as dates
  - Spreadsheet cells are referenced by their row and column designation

### **Spreadsheets**


 Suppose we have collected data on the number of students that came to get help from a set of tutors over a period of several weeks

|    | Α    | В     | С     | D     | E     | F     | G     | Н |  |
|----|------|-------|-------|-------|-------|-------|-------|---|--|
| 1  |      |       |       |       |       |       |       |   |  |
| 2  |      |       |       | Tutor |       |       |       |   |  |
| 3  |      |       | Hal   | Amy   | Frank | Total | Avg   |   |  |
| 4  |      | 1     | 12    | 10    | 13    | 35    | 11.67 |   |  |
| 5  |      | 2     | 14    | 16    | 16    | 46    | 15.33 |   |  |
| 6  | Week | 3     | 10    | 18    | 13    | 41    | 13.67 |   |  |
| 7  |      | 4     | 8     | 21    | 18    | 47    | 15.67 |   |  |
| 8  |      | 5     | 15    | 18    | 12    | 45    | 15.00 |   |  |
| 9  |      | Total | 59    | 83    | 72    | 214   | 71.33 |   |  |
| 10 |      | Avg   | 11.80 | 16.60 | 14.40 | 42.80 | 14.27 |   |  |
| 11 |      |       |       |       |       |       |       |   |  |
| 12 |      |       |       |       |       |       |       |   |  |
|    |      |       |       |       |       |       |       |   |  |

Figure 12.1

A spreadsheet containing data and computations

- The power of spreadsheets comes from the formulas that we can create and store in cells
  - When a formula is stored in a cell, the result of the formula is displayed in the cell
  - If we've set up the spreadsheet correctly, we could add or remove tutors, add additional weeks of data, or change any of the data we have already stored and the corresponding calculations would automatically be updated



- Formulas can make use of basic arithmetic operations using the standard symbols (+, 2, \*, and /)
- They can also make use of spreadsheet functions that are built into the software
  - Functions often operate on a set of contiguous cells
- A range of cells is specified with two dots (periods) between the two cell endpoints

| Function                           | Computes                                                                          |  |
|------------------------------------|-----------------------------------------------------------------------------------|--|
| SUM(val1, val2,)<br>SUM(range)     | Sum of the specified set of values                                                |  |
| COUNT(val1, val2,)<br>COUNT(range) | Count of the number of cells that contain values                                  |  |
| MAX(val1, val2,)<br>MAX(range)     | Largest value from the specified set of values                                    |  |
| SIN(angle)                         | The sine of the specified angle                                                   |  |
| PI()                               | The value of PI                                                                   |  |
| STDEV(val1, val2,)<br>STDEV(range) | The standard deviation from the specified sample values                           |  |
| TODAY()                            | Today's date                                                                      |  |
| LEFT(text, num_chars)              | The leftmost characters from the specified text                                   |  |
| IF(test, true_val, false_val)      | If the test is true, it returns the true_val; otherwise, it returns the false_val |  |
| ISBLANK (value)                    | Returns true if the specified value refers to an empty cell                       |  |

#### Figure 12.4 Some common spreadsheet functions

# **Circular References**

 A circular reference can never be resolved because the result of one formula is ultimately based on another, and vice versa

| Cell | Contents         |  |
|------|------------------|--|
| A1   | =B7*COUNT(F8K8)  |  |
| B7   | =A14+SUM(E40E50) |  |
| E45  | =G18+G19–D13     |  |
| D13  | =D12/A1          |  |

Figure 12.5 A circular reference situation that cannot be resolved

# **Spreadsheet Analysis**

- One reason spreadsheets are so useful is their versatility
- Spreadsheet analysis can be applied to just about any topic area
  - Track sales
  - Analyze sport statistics
  - Maintain student grades
  - Keep a car maintenance log
  - Record and summarize travel expenses
  - Track project activities and schedules
  - Plan stock purchases

# **Spreadsheet Analysis**

- Spreadsheets are also useful because of their dynamic nature, which provides the powerful ability to do what-if analysis
  - What if the number of attendees decreased by 10%?
  - What if we increase the ticket price by \$5?
  - What if we could reduce the cost of materials by half?

## Database Management Systems

- Database A structured set of data
- Database management system (DBMS) A combination of software and data, including a physical database, a database engine, and a database schema
  - Physical database A collection of files that contain the data
  - Database engine Software that supports access to and modification of the database contents
  - Database schema A specification of the logical structure of the data stored in the database

### Database Management Systems

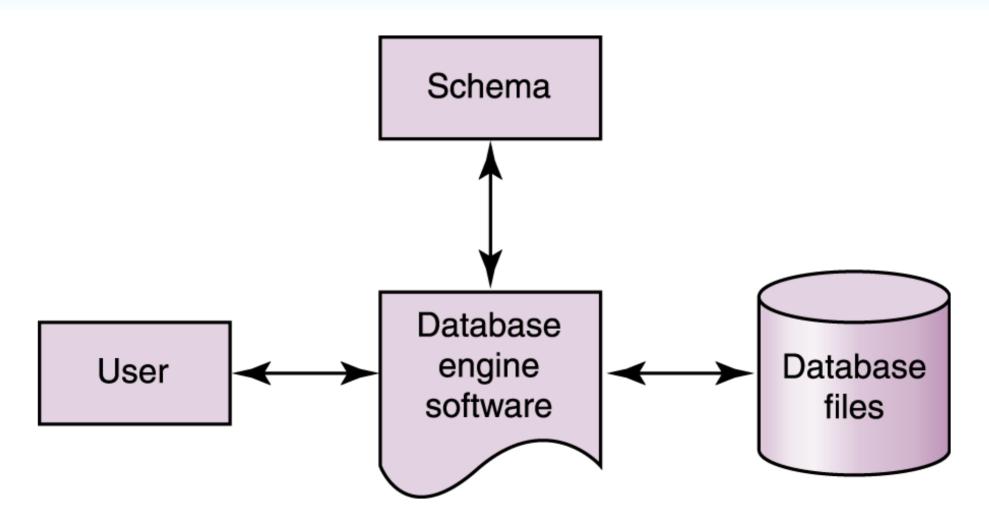



Figure 12.6 The elements of a database management system

### **Database Management Systems**

- Specialized database languages allow the user to specify the structure of data; add, modify, and delete data; and query the database to retrieve specific stored data
- The database schema provides the logical view of the data in the database

# **The Relational Model**

- In a relational DBMS, the data items and the relationships among them are organized into tables
  - A table is a collection of records rows
  - A record is a collection of related fields cols
  - Each field of a database table contains a single data value
  - Each record in a table contains the same fields

### **A Database Table**

#### Movie

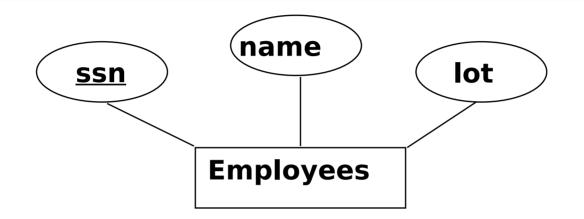
| Movield | Title              | Genre            | Rating |
|---------|--------------------|------------------|--------|
| 101     | Sixth Sense, The   | thriller horror  | PG-13  |
| 102     | Back to the Future | comedy adventure | PG     |
| 103     | Monsters, Inc.     | animation comedy | G      |
| 104     | Field of Dreams    | fantasy drama    | PG     |
| 105     | Alien              | sci-fi horror    | R      |
| 106     | Unbreakable        | thriller         | PG-13  |
| 107     | X-Men              | action sci-fi    | PG-13  |
| 5022    | Elizabeth          | drama period     | R      |
| 5793    | Independence Day   | action sci-fi    | PG-13  |
| 7442    | Platoon            | action drama war | R      |

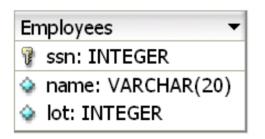
Figure 12.7 A database table, made up of records and fields

## **A Database Table**

 We can express the schema for this part of the database as follows:

Movie (Movield:key, Title, Genre, Rating)


# Relationships


#### Customer

| CustomerId | Name          | Genre                 | CreditCardNumber    |
|------------|---------------|-----------------------|---------------------|
| 101        | Dennis Cook   | 123 Main Street       | 2736 2371 2344 0382 |
| 102        | Doug Nickle   | 456 Second Ave        | 7362 7486 5957 3638 |
| 103        | Randy Wolf    | 789 Elm Street        | 4253 4773 6252 4436 |
| 104        | Amy Stevens   | 321 Yellow Brick Road | 9876 5432 1234 5678 |
| 105        | Robert Person | 654 Lois Lane         | 1122 3344 5566 7788 |
| 106        | David Coggin  | 987 Broadway          | 8473 9687 4847 3784 |
| 107        | Susan Klaton  | 345 Easy Street       | 2435 4332 1567 3232 |

Figure 12.8 A database table containing customer data

### **ER Model Basics**





| ssn         | name      | lot |
|-------------|-----------|-----|
| 123-22-3666 | Attishoo  | 48  |
| 231-31-5368 | Smiley    | 22  |
| 131-24-3650 | Smethurst | 35  |

# Relationships

 We can use a table to represent a collection of relationships between objects

Rents

| CustomerId | Movield | DateRented | DateDue   |
|------------|---------|------------|-----------|
| 103        | 104     | 3-12-2002  | 3-13-2002 |
| 103        | 5022    | 3-12-2002  | 3-13-2002 |
| 105        | 107     | 3-12-2002  | 3-15-2002 |

Figure 12.9 A database table storing current movie rentals

# **Relational Query Languages**

- A major strength of the relational model: supports simple, powerful *querying* of data.
- Queries can be written intuitively, and the DBMS is responsible for efficient evaluation.
  - The key: precise semantics for relational queries.
  - Allows the optimizer to extensively re-order operations, and still ensure that the answer does not change.

# **Structured Query Language**

- Structured Query Language (SQL) A comprehensive database language for managing relational databases
- Developed by IBM (system R) in the 1970s
- Need for a standard since it is used by many vendors
- Standards:
  - SQL-86
  - SQL-99 (major extensions, current standard)

# **Queries in SQL**

select attribute-list from table-list where condition

select Title from Movie where Rating = 'PG'

select Name, Address from Customer

select \* from Movie where Genre like '%action%'

select \* from Movie where Rating = 'R' order by Title

# **Querying Multiple Relations**

#### • What does the following query compute?

| SELECT | S.name, E.cid               |
|--------|-----------------------------|
| FROM   | Students S, Enrolled E      |
| WHERE  | S.sid=E.sid AND E.grade="A" |

#### Given the following instances of Enrolled and Students:

| sid   | name  | login      | age | gpa |
|-------|-------|------------|-----|-----|
| 53666 | Jones | jones@cs   | 18  | 3.4 |
| 53688 | Smith | smith@eecs | 18  | 3.2 |
| 53650 | Smith | smith@math | 19  | 3.8 |

| sid   | cid         | grade |
|-------|-------------|-------|
| 53831 | Carnatic101 | С     |
| 53831 | Reggae203   | В     |
| 53650 | Topology112 | A     |
| 53666 | History105  | В     |

| we get: | S.name | E.cid       |
|---------|--------|-------------|
| 0       | Smith  | Topology112 |

# **Modifying Database Content**

insert into Customer values (9876, 'John Smith', '602 Greenbriar Court', '2938 3212 3402 0299')

update Movie set Genre = 'thriller drama' where title = 'Unbreakable'

delete from Movie where Rating = 'R'

## **Database Design**

- Entity-relationship (ER) modeling A popular technique for designing relational databases
- ER Diagram Chief tool used for ER modeling that captures the important record types, attributes, and relationships in a graphical form

### **Database Design**

 These designations show the cardinality constraint of the relationship

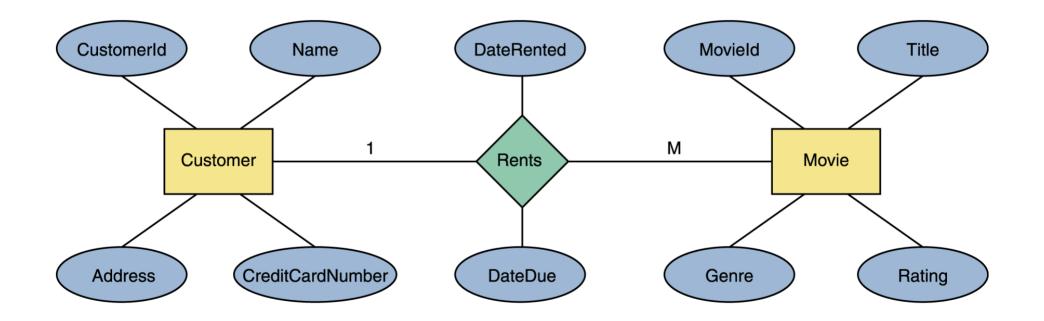



Figure 12.10 An ER diagram for the movie rental database

# **Components of Data-Intensive Systems**

Three separate types of functionality:

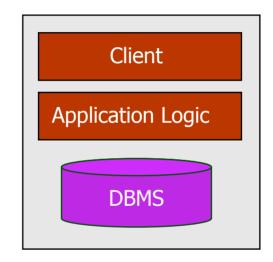
- Presentation
- Application logic
- Data management
- The system architecture determines whether these three components reside on a single system tier or are distributed across several tiers

# **The Three Layers**

#### **Presentation tier**

- Primary interface to the user
- Needs to adapt to different display devices (PC, PDA, cell phone, voice access?)

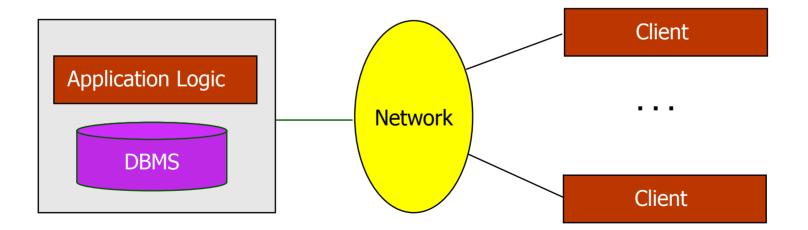
### Middle tier


- Implements business logic (implements complex actions, maintains state between different steps of a workflow)
- Accesses different data management systems

### Data management tier

 One or more standard database management systems

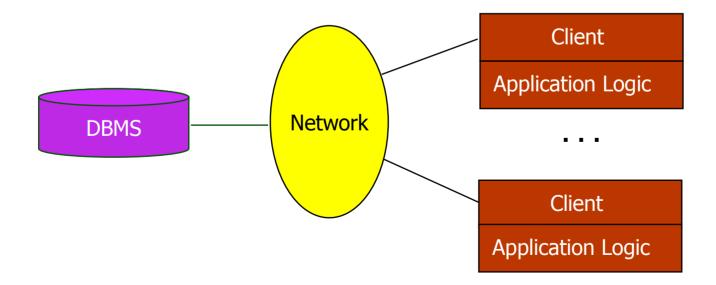
# **Single-Tier Architectures**


- All functionality combined into a single tier, usually on a mainframe
  - User access through dumb terminals
- Advantages:
  - Easy maintenance and administration
- Disadvantages:
  - Today, users expect graphical user interfaces.
  - Centralized computation of all of them is too much for a central system

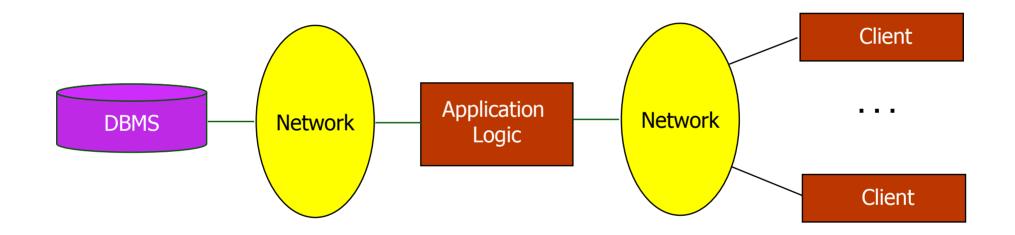


## **Client-Server Architectures**

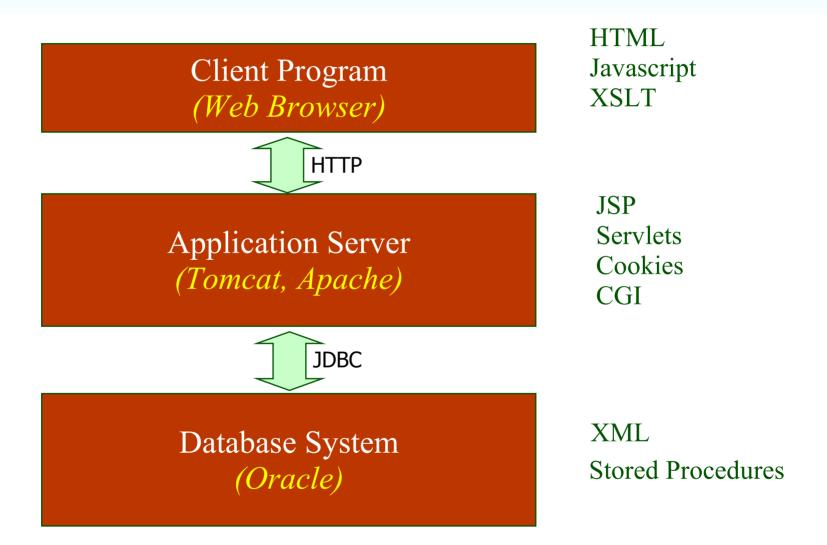
#### Work division: Thin client


- Client implements only the graphical user interface
- Server implements business logic and data management




## **Client-Server Architectures**

#### Work division: Thick client


- Client implements both the graphical user interface and the business logic
- Server implements data management



### **Three-Tier Architecture**



# **Technologies**



# **Advantages: 3-Tier Architecture**

#### Heterogeneous systems

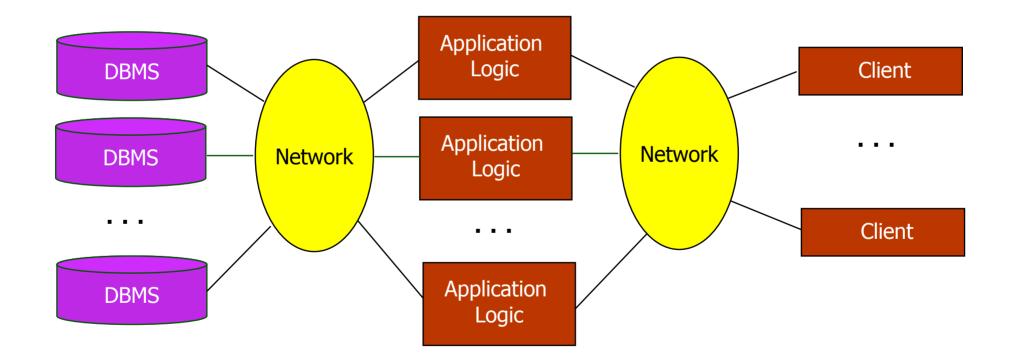
Tiers can be independently maintained, modified, and replaced

#### Thin clients

Only presentation layer at clients (web browsers)

#### Integrated data access

- Several database systems can be handled transparently at the middle tier
- Central management of connections


#### Scalability

Replication at middle tier permits scalability of business logic

#### Software development

- Code for business logic is centralized
- Interaction between tiers through well-defined APIs: Can reuse standard components at each tier

### Scalable Three-Tier Architecture



### Homework

- Read Chapter Twelve Concentrate on Section 12.3
- Program Assignment #2 Let Me Know If You Are Having Trouble
- Assignment Due 11/20 but you can email before :-)
- Workshop Class On 11/20 program and any other problems

### **Have A Nice Weekend**

