### **Chapter 15**

#### Networks – Part 2



#### **ARPANet in 1969**

# **Internet Standards and RFCs**

- Internet Architecture Board (IAB)
   overall architecture
- Internet Engineering Task Force (IETF)
   engineering and development
- Internet Engineering Steering Group (IESG)
   manages the IETF and standards process

# **Request For Comments (RFC)**

 RFCs are the working notes of the Internet research and development community

# **Standardization Process**

- Stable and well understood
- Technically competent
- Substantial operational experience
- Significant public support
- Useful in some or all parts of Internet

#### Key difference from ISO: **operational experience**

# **RFC Publication Process**



# **How To Find RFCs**

- http://www.rfc-editor.org/rfcsearch.html
   Search for RFCs
- Some Popular Ones:

# Modern Life In Cyberspace...

http://www.aclu.org/pizza/images/screer



# ...All I Wanted Was A Pizza!

# Introduction to Network Security

# **Security Attacks**

BRINGING CIVILIZATION TO ITS KNEES ...



# **Security Services**

- Confidentiality protection from passive attacks
- Authentication you are who you say you are
- Integrity received as sent, no modifications, insertions, shuffling or replays

# **Security Services**

- Nonrepudiation can't deny a message was sent or received
- Access Control ability to limit and control access to host systems and apps
- Availability attacks affecting loss or reduction on availability

# **Network Security Model**



# **Network Security Model**

# Four basic tasks in designing a security service:

- Design algorithm
- Generate secret information to be used
- Develop methods to distribute and share info
- Specify a protocol to be used by the two principals

# **Protocols – Simple To Complex**



# **Protocols in a Simplified Architecture**



# Protocol Data Units in TCP/IP



# **Operation of a Protocol Architecture**



# **TCP and UDP Headers**



### **IP Headers**



# **TP/IP Concepts**



# **Some TCP/IP Protocols**



#### Hofstra University - CSC005

# **Assigned Port Numbers**

| Port | Service  | Port | Service    |
|------|----------|------|------------|
| 7    | echo     | 110  | рор3       |
| 20   | ftp-data | 119  | nntp       |
| 21   | ftp      | 123  | ntp        |
| 23   | telnet   | 389  | ldap       |
| 25   | smtp     | 443  | https      |
| 39   | rip      | 500  | isakmp     |
| 53   | DNS      | 520  | rip2       |
| 80   | http     | 1812 | radiusauth |
| 88   | kerberos | 2049 | Sun NFS    |

# **Configuration of TCP/IP**



# **Alternate Routing Diagram**



# **Ethereal**

- Ethereal is a free network protocol analyzer for Unix and Windows
- Packet Sniffer data can be captured "off the wire" from a live network connection
- www.ethereal.com Everything you ever wanted to know about ethereal
- wiki.ethereal.com This is the "User's Manual;" also has has a nice "References" section

| Ctc          | ptrace()           | 1 - Ethe       | ereal               |                        |                    |                   |                  |          |                       |                     |                         |             | _ 🗆 ×     |
|--------------|--------------------|----------------|---------------------|------------------------|--------------------|-------------------|------------------|----------|-----------------------|---------------------|-------------------------|-------------|-----------|
| <u>F</u> ile | Edit               | <u>C</u> aptu  | re <u>D</u> ispla   | ay <u>T</u> ools       |                    | 43                |                  | b        | usiness.r             | nytimes.co          | om /                    | ACK         | Help<br>— |
| No.          | Time               |                | Source              |                        |                    | Destinati         | ion              |          | Protocol              | Info                |                         |             | 2         |
| 52           | 38.98              | 34733          | VCOSTA_I            | APTOP                  |                    | 205.18            | 5.55.1           | .63      | TCP                   | 1126 > 80 [9        | SYN] Seg=1034           | 17 Ack=0 W  | n=8192    |
| 53           | 39.00              | 58380          | 205.185.            | .55.163                |                    | VCOSTA            | _LAPTO           | )P       | TCP                   | 80 > 1126 [9        | SYN, ACK] Seq           | =354713864  | Ack=10    |
| 54           | 39.00              | 58987          | VCOSTA_L            | APTOP                  |                    | 205.18            | 5.55.1           | .63      | TCP                   | 1126 > 80 [/        | АСК] Seq=1034           | 18 ACK=354  | 713865 \  |
| 56           | 39.00              | 20179          | VCOSTA_L<br>205-195 | _APTOP                 |                    | 205.18            | 5.55.1<br>LADTO  | .63      |                       | POST /news_1        | Continuo                | tion=news_  | cicles (  |
| 57           | , 38 33<br>1 28 10 | 2883U          | VCOSTA I            | . JJ. 105              |                    | 205 18            | _LAPIC<br>5 55 1 | /F<br>63 |                       | 1126 > 80 L         | δητημε<br>Δηκί sea=1041 | 93 ACK=354  | 713954    |
| 58           | 39.7               | 58173          | VCOSTA I            | APTOP                  |                    | 151.10            | 8.114.           | 202      | DNS                   | Standard que        | erv PTR 163.5           | 5.185.205.  | in-addr.  |
| 59           | 39.75              | 58227          | VCOSTA_I            | APTOP                  |                    | ns1.sr            | v.hcvl           | Inv.cv.r | et DNS                | Standard que        | erv PTR 163.5           | 5.185.205.  | in-addr.  |
| 60           | 39.80              | 04710          | 205.185.            | .55.163                |                    | VCOSTA            | _LAPTO           | ) P 🕴 🥄  | HTTP                  | HTTP/1.1 200        | 0 όκ                    |             |           |
| 61           | 39.80              | 05912          | 205.185.            | .55.163                |                    | VCOSTA            | _LAPTO           | P 🔪      | HTTP                  | Continuation        | n                       |             |           |
| 62           | 39.80              | 06051          | VCOSTA_I            | APTOP                  |                    | 205.18            | 5.55.1           | .63      | ТСР                   | 1126 > 80 [/        | АСК] Seq=1041           | .93 Ack=354 | 716874 \  |
| 63           | 29 80              | 17134          | 205 185             | 55 163                 |                    | VCOSTA            |                  | P        | нттр                  | Continuation        | n                       |             | <u>м</u>  |
|              |                    |                |                     |                        |                    |                   |                  |          |                       |                     |                         |             |           |
| 🗏 Fi         | name 5             | 5 (82          | 9 on wir            | 'e, 829 c              | apture             | ed)               |                  |          |                       |                     |                         |             | 4         |
|              | Anniv<br>          | val Ti         | ime: Mar            | 14, 200                | 1 01:30            | 8:22.13           | 34               |          | $\langle \rangle$     |                     |                         |             | P         |
|              | Time               | delta          | a trom p            | revious  <br>finst pou | packet<br>ckst.    | : 0.016           | 043 SI           | econds   | N                     | dns auerv           | ,                       |             |           |
|              | Fram               | s Numb         | .ive to<br>her• 55  | i ii su pa             | CKEC.              | 59.0010           | SU Se            | conus    |                       |                     |                         |             |           |
|              | Packe              | et Ler         | ngth: 82            | 9 bytes                |                    |                   |                  |          |                       |                     | _ cook                  | kie is cap  | tured 😽   |
| ,<br>[UEE3   |                    |                | -                   | -                      |                    |                   | 20 05            |          | <del> conci oji</del> |                     |                         |             |           |
| 0220         | ) 68<br>) 24       | 65 Od          | 0a 43 6             | of 6f 6b               | 69 65              | 3a 20             | 52 4d            | 49 44    | heCook                | ie: RMID            |                         |             | -         |
| 0230         | ) 30<br>) 30       | 31 38<br>3h 20 | 4e 59 5             | 4 03 38<br>4 2d 53     | 30 33<br>31 31     | 30 31             | 7a 71            | 33 32    | 0: NYT-S              | =1017032            |                         |             |           |
| 0250         | <u> </u>           | 68 65          | 7a 57 5             | 6 4f 2f                | 44 50              | 6d 33             | 6f 41            | 54 47    | Fhezwv0/              | DPm3oATG            |                         |             |           |
| 0260         | ) 2e               | 54 72          | 69 56 6             | e 39 31                | 43 44              | 47 36             | 59 77            | 57 6e    | .Trivn91              | CDG6YwWn            |                         |             |           |
| 0270         | ) 59<br>) 57       | 35 70<br>57 70 | 30 4b 6             | 10395a<br>63567        | - 55-42<br>- 78-46 | 2T 49<br>72 71    | 57 39<br>26 75   | 56 24    | YSPUKK9Z              | UB/IW9RV            |                         |             |           |
| 0290         | ) 69               | 57 2e<br>5a 75 | 4e 39 5             | 2 4b 37                | 63 5a              | 62 44             | 4e 78            | 67 78    | iZuN9RK7              | cZbDNxax            |                         |             |           |
| 02a(         | 67                 | 30 30          | 3b 20 5             | 2 44 42                | 3d 43              | 38 30             | 32 30            | 30 32    | g00; RDB              | =<802002            |                         |             |           |
| 02b(         | 2 44               | 32 44          | 30 30 3             | 0 30 35                | 35 35              | 33 30             | 31 30            | 35 36    | D2D00005              | 55301056            |                         |             |           |
| 02 d(        | J 34<br>D 30       | 39 35<br>20 20 | 20 20 2             | 3 31 30<br>0 37 36     | 31 3U<br>20 77     | ' 65 61           | 30 30<br>74 68   | 50 50    | 49528310              | LULUUUUU<br>weather |                         |             |           |
| 02e0         | Ď 63               | 69 74          | 79 3d 4             | C 47 41                | 3b 20              | 41 53             | 50 53            | 45 53    | city=LGA              | ; ASPSES            |                         |             |           |
| 02f(         | 53                 | 49 4f          | 4e 49 4             | 4 51 47                | 47 51              | 47 52             | 59 58            | 3d 43    | SIONIDQG              | GQGRYX=C            |                         | _           |           |
| 0300         | ) 4e               | 48 4e<br>44 46 | 4b 4e 4             | 7 44 41                | 46 49              | )4a 50<br>1 05 6d | 46 40            | 48 43    | NHNKNGDA              | FIJPFLHC            | getting                 | a quote     |           |
| 0320         | ) 4)<br>) 6e       | 44 40<br>65 77 | 73 26 6             | 5 41 0u                | 69 6f              | 6e 3d             | 71 75            | 6f 74    | news&act              | ion=quot            |                         |             |           |
| 0330         | 0 65               | 26 74          | 69 63 6             | b 65 72                | 3d 73              | 75 6e             | 77               | 5        | e&ticker              | =sunw               |                         |             | E         |
|              |                    |                |                     |                        |                    |                   |                  |          |                       | aion Control Dust   | each (ten)              |             |           |
| Filter       |                    |                |                     |                        |                    |                   |                  |          | set iransmis          | sion Control Prot   | locol (tcp)             |             |           |

# **Ethereal Etiquette**

- Be careful when and where you use this tool
- It makes people nervous
- Use prudence with the information you collect
- When in doubt, seek permission!

# Network Access Security Model



# **Information Security**

- Physical
- Administrative
- "Lockup the file cabinet"

# **Private Networks**

- Isolated to individual organizations
- Emergence of computer security
- Sharing a system
- Protecting data

# Networking

- Networks start talking to each other
- Gateways
- Arpanet
- TCP/IP Everywhere
- Vinton Cerf, "IP On Everything!"



# Maturing of the Internet

- Telephones used by 50% of worlds population
- Internet attains similar level of growth by 2010 – max growth
- Connecting computers and programmable devices
- More devices than people

# **Early Hacking**



- Cap'n Crunch cereal prize
- Giveaway whistle produces 2600 MHz tone
- Blow into receiver free phone calls
- "Phreaking" encouraged by Abbie Hoffman
- Doesn't hurt anybody





# **Captain Crunch**

#### John Draper

- `71: Bluebox built by many
- Jobs and Wozniak were early implementers
- Developed "EasyWriter" for first IBM PC
- High-tech hobo
- White-hat hacker

# **The Eighties**



- 1983 "War Games" movie
- Federal Computer Fraud and Abuse Act - 1986
- Robert Morris Internet worm -1988
- Brings over 6000 computers to a halt
- \$10,000 fine
- His Dad worked for the NSA!!!

# It Got Worse



- 1995 Kevin Mitnick arrested for the 2<sup>nd</sup> time
- Stole 20,000 credit card numbers
- First hacker on FBI's Most Wanted poster
- Tools: password sniffers, spoofing
- http://www.2600.com

# **Tracking Attacks**



#### http://www.cert.org



#### Just because you're paranoid, doesn't mean they're not out to get you! - Anonymous



# **Firewalls**



#### Figure 15.8 A firewall protecting a LAN

# Firewalls Make It To The Movies



# **Why Firewalls?**

- Internet connectivity is no longer an option for most corporations
- The Internet allows you access to worldwide resources, but...
   ...the Internet also allows the *world* to try and access your resources
- This is a grave risk to most organizations

# **Why Firewalls?**

- A firewall is inserted between the premises network and the Internet
- Establishes a perimeter
- Provides a choke point where security and audits can be imposed
- Single computer system or a set of systems can perform the firewall function

### Good Fences Make Good Neighbors – Robert Frost, "Mending Wall"



# **Design Goals**

- All traffic, from inside to outside and vice versa, must pass through the firewall
- Only authorized traffic (defined by the security policy) is allowed to flow
- Firewall is immune to penetration uses a trusted system

# **Other Types Of Firewalls**

- Personal Firewalls Appliances

   personal firewall appliances
   are designed to protect small
   networks such as networks
   that might be found in home
   offices
- Provide: print server, shared broadband use, firewall, DHCP server and NAT



(NB: This is not an endorsement of any product)

### Viruses



# Viruses

- A virus is a submicroscopic parasitic particle that infects cells in biological organisms.
- Viruses are non-living particles that can only replicate when an organism reproduces the viral RNA or DNA.
- Viruses are considered non-living by the majority of virologists
- www.virology.net



# Viruses

- Viruses: code embedded within a program that causes a copy of itself to be inserted in other programs and performs some unwanted function
- Infects other programs
- Code is the DNA of the virus

#### Worms



## Worms

- Worms: program that can replicate itself and send copies to computers across the network and performs some unwanted function
- Uses network connections to spread from system to system

# **Useful Websites**

- http://www.rfc-editor.org/rfcsearch.html
   Search RFCs
- http://www.cert.org
   Center for Internet security
- http://www.counterpane.com/alerts.html
   Some recent alerts

# **Assignment #3**

- Research these two RFCs: RFC1129 and RFC968. Given a brief - paragraph, not a single sentence – description based on the abstract, introduction, or basic content
- Pick google.com and one other site. Using whois and ARIN, get as much information as possible about the IP addressing, the DNS and the site (location, owner, etc.)
- Due next Wednesday, December 6 or you can email it earlier

# Homework

- Read Chapter Fifthteen and review slides
- ...Next Class We'll Cover Artificial Intelligence...

# ...Have A Nice Weekend



#### "The City" At 1200 Feet In December