
1Hofstra University - CSC00512/10/06

Limits Of Computing
Chapter 17

2Hofstra University - CSC00512/10/06

Complexity of Software

Commercial software contains errors
The problem is complexity
Software testing can demonstrate the
presence of bugs but cannot demonstrate
their absence

As we find problems and fix them, we raise our
confidence that the software performs as it should
But we can never guarantee that all bugs have
been removed

3Hofstra University - CSC00512/10/06

Software Engineering

• Software requirements Broad, but
precise, statements outlining what is to
be provided by the software product

• Software specifications A detailed
description of the function, inputs,
processing, outputs, and special features
of a software product

4Hofstra University - CSC00512/10/06

Software Engineering

A guideline for the number of errors per lines of
code that can be expected

Standard software: 25 bugs per 1,000 lines
of program
Good software: 2 errors per 1,000 lines
Space Shuttle software: < 1 error per 10,000 lines

5Hofstra University - CSC00512/10/06

Notorious Software Errors

Mariner 1 Venus Probe
This probe, launched in July of 1962, veered off
course almost immediately and had to be
destroyed

The problem was traced to the following line of
Fortran code:

 DO 5 K = 1. 3

The period should have been a comma.

An $18.5 million space exploration vehicle was
lost because of this typographical error

6Hofstra University - CSC00512/10/06

Notorious Software Errors

Denver baggage handling system - was so
complex (involving 300 computers) that the
development overrun prevented the airport from
opening on time. Fixing the incredibly buggy
system required an additional 50% of the original
budget - nearly $200m.

The 2003 North America blackout - was triggered
by a local outage that went undetected due to a
race condition in General Electric Energy's XA/21
monitoring software.

FBI in 2005 - $170 million FBI project to update
their case management system.

7Hofstra University - CSC00512/10/06

Notorious Software Errors

Mars Climate Orbiter (1999) - The 125 million
dollar Mars Climate Orbiter is assumed lost by
officials at NASA. The failure responsible for loss of
the orbiter is attributed to a failure of NASA’s
system engineer process. The process did not
specify the system of measurement to be used on
the project. As a result, one of the development
teams used Imperial measurement while the other
used the metric system of measurement. When
parameters from one module were passed to
another during orbit navigation correct, no
conversion was performed, resulting in the loss of
the craft.
http://mars.jpl.nasa.gov/msp98/orbiter/

http://mars.jpl.nasa.gov/msp98/orbiter/

8Hofstra University - CSC00512/10/06

Formal Verification

The verification of program correctness,
independent of data testing, is an important
area of theoretical computer science research

Formal methods have been used successfully
in verifying the correctness of computer chips

It is hoped that success with formal verification
techniques at the hardware level can lead
eventually to success at the software level

9Hofstra University - CSC00512/10/06

Big-O Analysis

A function of the size of the input to the
operation (for instance, the number of
elements in the list to be summed)

We can express an approximation of this
function using a mathematical notation
called order of magnitude, or Big-O
notation

10Hofstra University - CSC00512/10/06

Big-O Analysis

f(N) = N4 + 100N2 + 10N + 50

Then f(N) is of order N4—or, in Big-O
notation, O(N4).

For large values of N, N4 is so much larger
than 50, 10N, or even 100 N2 that we can
ignore these other terms

11Hofstra University - CSC00512/10/06

Big-O Analysis

Common Orders of Magnitude
– O(1) is called bounded time

Assigning a value to the ith element in an array
of N elements

– O(log2N) is called logarithmic time

Algorithms that successively cut the amount of
data to be processed in half at each step typically
fall into this category

Finding a value in a list of sorted elements using
the binary search algorithm is O(log2N)

12Hofstra University - CSC00512/10/06

Big-O Analysis

– O(N) is called linear is called linear time
Printing all the elements in a list of N elements is
O(N)

– O(N log2N)
Algorithms of this type typically involve applying a
logarithmic algorithm N times

The better sorting algorithms, such as Quicksort,
Heapsort, and Mergesort, have N log2N complexity

13Hofstra University - CSC00512/10/06

Big-O Analysis

– O(N2) is called quadratic time
Algorithms of this type typically involve applying a
linear algorithm N times. Most simple sorting
algorithms are O(N2) algorithms

– O(2N) is called exponential time

14Hofstra University - CSC00512/10/06

Big-O Analysis

– O(n!) is called factorial time

The traveling salesperson graph algorithm is a
factorial time algorithm

Algorithms whose order of magnitude can be
expressed as a polynomial in the size of the
problem are called polynomial-time algorithms

All polynomial-time algorithms are defined as
being in Class P

15Hofstra University - CSC00512/10/06

Big-O Analysis

Table 17.2
Comparison of rates
of growth

16Hofstra University - CSC00512/10/06

Big-O Analysis

Figure 17.3 Orders of complexity

17Hofstra University - CSC00512/10/06

Turing Machines

Alan Turing developed the concept of a
computing machine in the 1930s

A Turing machine, as his model became
known, consists of a control unit with a
read/write head that can read and write
symbols on an infinite tape

18Hofstra University - CSC00512/10/06

Turing Machines

Why is such a simple
machine (model) of any
importance?

It is widely accepted that
anything that is intuitively
computable can be computed
by a Turing machine

If we can find a problem for
which a Turing-machine
solution can be proven not to
exist, then the problem must
be unsolvable

Figure 17.4 Turing machine processing

19Hofstra University - CSC00512/10/06

Halting Problem

It is not always obvious that a
computation (program) halts

The Halting problem: Given a program
and an input to the program, determine if
the program will eventually stop with this
input

This problem is unsolvable

20Hofstra University - CSC00512/10/06

Halting Problem

Assume that there exists a Turing-machine
program, called SolvesHaltingProblem that
determines for any program Example and
input SampleData whether program Example
halts given input SampleData

Figure 17.5 Proposed program for solving the Halting problem

21Hofstra University - CSC00512/10/06

Halting Problem

Let’s reorganize our
bins, combining all
polynomial
algorithms in a bin
labeled Class P

Figure 17.8 A reorganization of algorithm classification

22Hofstra University - CSC00512/10/06

Halting Problem

The algorithms in the
middle bin have known
solutions, but they are
called intractable because
for data of any size they
simply take too long to
execute

A problem is said to be in
Class NP if it can be solved
with a sufficiently large
number of processors in
polynomial time

Figure 17.9 Adding Class NP

23Hofstra University - CSC00512/10/06

The Promise...

Quantum Computing – subatomic level;
great promise for cryptography

Photonic Computing – photons replace
electrons; no wires!

Biological Computing - use of living
organisms or their components, e.g.
DNA strands, to perform computing
operations

24Hofstra University - CSC00512/10/06

Dilbert Said It Well...

25Hofstra University - CSC00512/10/06

...But George Carlin Said It
Better!!!

A Modern Man

http://www.youtube.com/watch?v=JZR5zpImvMc

26Hofstra University - CSC00512/10/06

Final Exam

Take Home Exam (on web site)
Six Questions – Answer All of Them
Due December 18 or Earlier!
Absolutely No Lateness
All other assignments must be in before
the 11th

Next Class – Monday, 12/11 – Short
Lecture On Limitations of Computing

27Hofstra University - CSC00512/10/06

La commedia e
finita' …

…Good Luck…Make A Difference!!!

