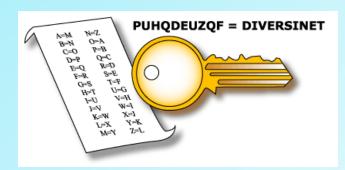
# **Network Security** Conventional Encryption

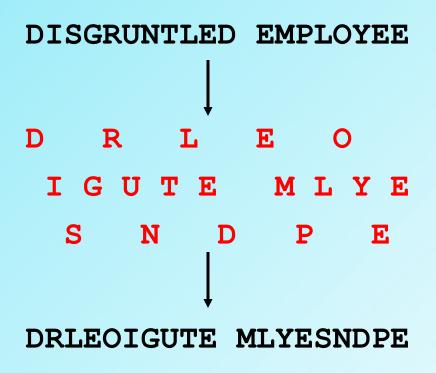



# **Caesar Cipher**

plain: abcdefghijklmnopqrstuvwxyz

key:

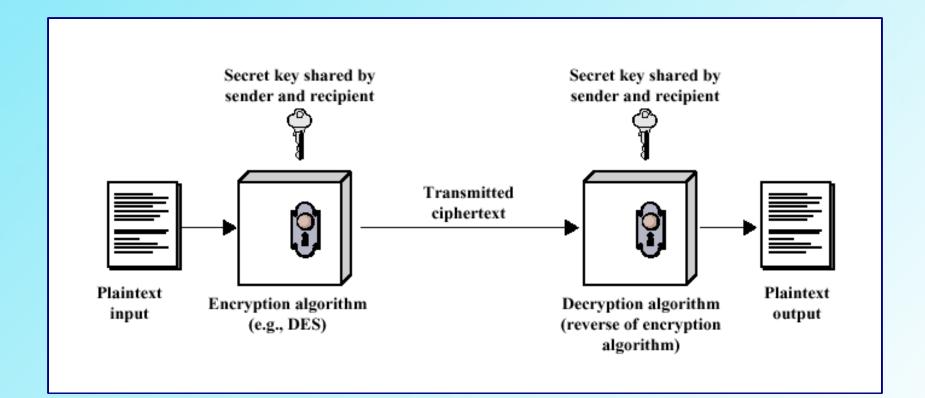
defghijklmnopqrstuvwxyzabc




cipher: PHHW PH DIWHU WKH WRJD SDUWB plain: MEET ME AFTER THE TOGA PARTY

# **Basic Types of Ciphers**

- Transposition ciphers rearrange bits or characters in the data
- Substitution ciphers replace bits, characters, or blocks of characters with substitutes


#### "Rail-Fence" Cipher



# **Encryption Methods**

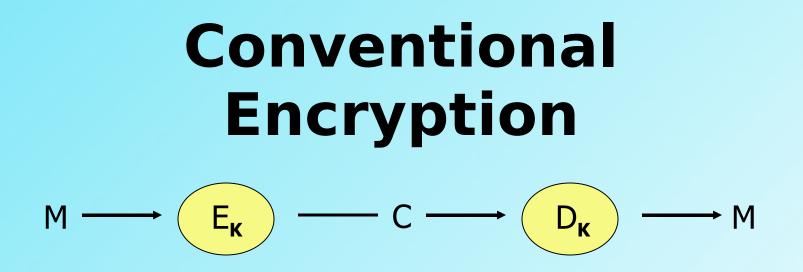
- The essential technology underlying virtually all automated network and computer security applications is cryptography
- Two fundamental approaches are in use:
  - Conventional Encryption, also known as symmetric encryption
  - Public-key Encryption, also known as asymmetric encryption

# **Conventional Encryption Model**



# Conventional Encryption

- The only form of encryption prior to late 1970s
- Long history
- Most widely used


# Conventional Encryption

Five components to the algorithm

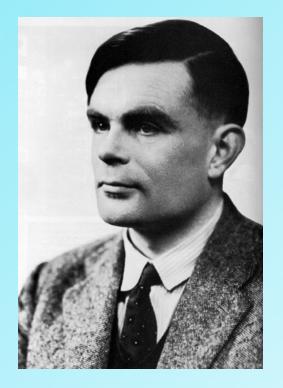
- Plaintext: The original message or data
- Encryption algorithm: Performs various substitutions and transformations on the plaintext
- Secret key: Input to the encryption algorithm. Substitutions and transformations performed depend on this key
- Ciphertext: Scrambled message produced as output. depends on the plaintext and the secret key
- Decryption algorithm: Encryption algorithm run in reverse. Uses ciphertext and the secret key to produce the original plaintext

# Conventional Encryption

- More rigorous definition
- Five components to the algorithm
  - A Plaintext message space, *M*
  - A family of enciphering transformations,  $E_{K}: \mathcal{M} \rightarrow C$ , where  $K \in \mathcal{K}$
  - A key space, *K*
  - A ciphertext message space, C
  - A family of deciphering transformations,  $D_K: C \rightarrow \mathcal{M}$ , where  $K \in \mathcal{K}$



 $E_{\kappa}$  defined by an encrypting algorithm E  $D_{\kappa}$  defined by an decrypting algorithm D


For given K,  $D_{K}$  is the **inverse** of  $E_{K}$ , i.e.,  $D_{K}(E_{K}(M))=M$ for every plain text message M

#### Requirements & Weaknesses

- Requirements
  - A strong encryption algorithm
  - Secure process for sender & receiver to obtain secret keys
- Methods of Attack
  - Cryptanalysis
  - Brute force

#### Cryptanalysis

 The process of attempting to discover the plaintext or key



**Alan Turing** broke the Enigma Code in WWII





# Cryptanalysis

- Security depends on the key...
- ...NOT the secrecy of the algorithm
- Low cost chips are possible
- Principal security problem is maintaining the secrecy of the key!

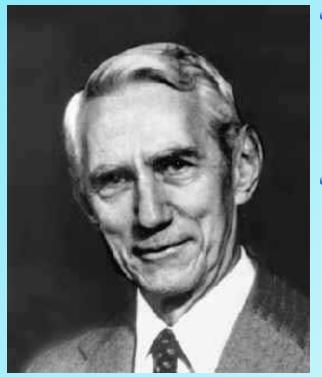
# **Cryptographic Systems**

- Type of Transformation substitution and/or transposition; no information must be lost, i.e., reversible
- Number of Keys Used symmetric, single key, conventional; asymmetric, two-key, public-key encryption
- Plaintext Processing block or stream cipher

#### **Attacks On Encrypted Msgs**

| Type of Attack Known to Cryptanalyst |                                                                                                                                                        |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ciphertext only                      | Encryption algorithm                                                                                                                                   |
|                                      | Ciphertext to be decoded                                                                                                                               |
| Known plaintext                      | Encryption algorithm                                                                                                                                   |
|                                      | Ciphertext to be decoded                                                                                                                               |
|                                      | •One or more plaintext-ciphertext pairs formed with the secret key                                                                                     |
| Chosen plaintext                     | Encryption algorithm                                                                                                                                   |
|                                      | Ciphertext to be decoded                                                                                                                               |
|                                      | <ul> <li>Plaintext message chosen by cryptanalyst, together with its<br/>corresponding ciphertext generated with the secret key</li> </ul>             |
| Chosen ciphertext                    | Encryption algorithm                                                                                                                                   |
|                                      | Ciphertext to be decoded                                                                                                                               |
|                                      | <ul> <li>Purported ciphertext chosen by cryptanalyst, together with its<br/>corresponding decrypted plaintext generated with the secret key</li> </ul> |
| Chosen text                          | Encryption algorithm                                                                                                                                   |
|                                      | Ciphertext to be decoded                                                                                                                               |
|                                      | <ul> <li>Plaintext message chosen by cryptanalyst, together with its<br/>corresponding ciphertext generated with the secret key</li> </ul>             |
|                                      | <ul> <li>Purported ciphertext chosen by cryptanalyst, together with its<br/>corresponding decrypted plaintext generated with the secret key</li> </ul> |

# **Computationally Secure**


- Cost of breaking cipher exceeds value of encrypted information
- Time to break cipher exceeds useful lifetime of the information

#### **Exhaustive Key Search**

| Key Size (bits)             | Number of Alternative<br>Keys  | Time required at 1 encryption/µs                       | Time required at 10 <sup>6</sup><br>encryptions/µs |
|-----------------------------|--------------------------------|--------------------------------------------------------|----------------------------------------------------|
| 32                          | $2^{32} = 4.3 \times 10^9$     | $2^{31} \mu s = 35.8 \text{ minutes}$                  | 2.15 milliseconds                                  |
| 56                          | $2^{56} = 7.2 \times 10^{16}$  | $2^{55} \mu s = 1142$ years                            | 10.01 hours                                        |
| 128                         | $2^{128} = 3.4 \times 10^{38}$ | $2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$     | 5.4 × 1018 years                                   |
| 168                         | $2^{168} = 3.7 \times 10^{50}$ | $2^{167} \mu s = 5.9 \times 10^{36} \text{ years}$     | 5.9 × 1030 years                                   |
| 26 characters (permutation) | $26! = 4 \times 10^{26}$       | $2\times 10^{26}\mu\mathrm{s}=6.4\times 10^{12}$ years | $6.4 \times 10^6$ years                            |

Brute Force with massively parallel processors

#### **Claude Shannon**



- A Mathematical Theory of Communication (1948), outlining what we now know as Information Theory
- Described ways to measure data using the quantity of disorder in any given system, together with the concept of entropy
- The Magna Carta of the information age
- Retired at age 50

# **Claude Shannon**

- Concept of entropy equivalent to a shortage in the information content in a message
- Second law of thermodynamics entropy is the degree of randomness in any system
- Many sentences can be significantly shortened without losing their meaning
- Shannon proved that in a noisy conversation, signal could always be send without distortion

# **Claude Shannon**

- If the message is encoded in such a way that it is self-checking, signals will be received with the same accuracy as if there were no interference on the line
- A language has a built in error-correcting code
- http://cm.bell-labs.com/cm/ms/what/shannonday
- http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

- Information theory measures the amount of information in a message by the average number of bits needed to encode all possible messages in an optimal encoding
- SEX field in a database: only one bit of information (Male:0; Female:1)
- Encoded in ASCII more space, but no more information

- Amount of information in a message is formally measured by the entropy of the message
- Entropy is a function of the probability distribution over the set of all possible messages

 Entropy of a given message is defined by the weighted average over all possible messages X:

$$H(X) = \sum_{X} p(X) \log_2 \left(\frac{1}{p(X)}\right)$$

#### Information Theory Example

p(male) = p(female) =1/2, then  $H(X) = \frac{1}{2} (\log_2 2) + \frac{1}{2} (\log_2 2)$   $= \frac{1}{2} + \frac{1}{2} = 1$ 

# There is 1 bit of information in the SEX field of a database

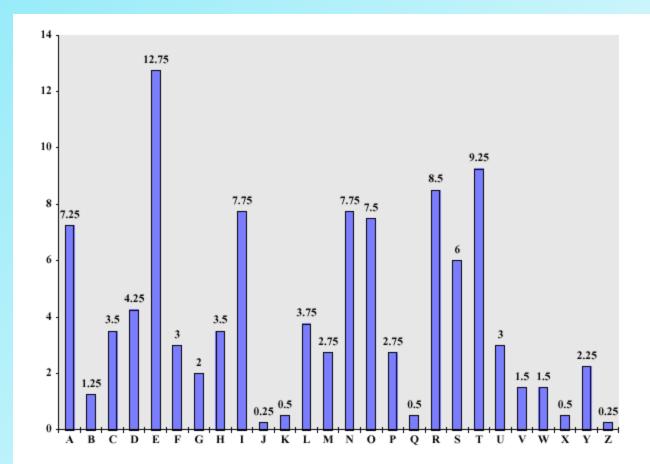
Hofstra University – Network Security Course, CSC290A

- Text files can be reduced by about 40% without losing information
- Because 1/p(x) decreases as p(x) increases, an optimal encoding uses short codes for frequently occurring messages; longer codes for infrequent
- Morse code
   E •, T -, J - -, Z - •

- The entropy of a message measures its uncertainty. The number of bits that must be learned when the message is hidden in ciphertext
- English is a highly redundant
- occurring frequently => ocrng frq

## **English Redundancy**

Delete vowels and double letters


mst ids cn b xprsd n fwr ltrs, bt th xprnc s mst nplsnt

# **Simple Cryptanalysis**

CIPHERTEXT:

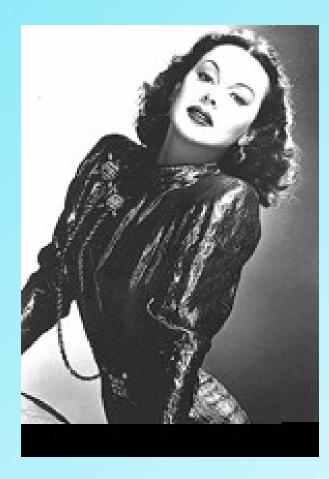
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

#### Letter Frequency In the English Language



H

# **Simple Cryptanalysis**


#### PLAINTEXT:

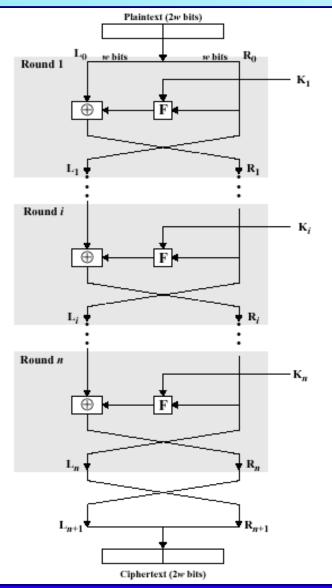
IT WAS DISCLOSED YESTERDAY THAT SEVERAL INFORMAL BUT DIRECT CONTACTS HAVE BEEN MADE WITH POLITICAL REPRESENTATIVES OF THE VIET CONG IN MOSCOW

# **20th Century Encryption**

- 20's & 30's bootleggers made heavy use of cryptography
- FBI create an office for codebreaking
- Japanese Purple Machine
- German Enigma Machine
- Navajo Code Talkers Windtalkers

# **Hedy Lamarr**




- 1941, Lamarr and composer George Antheil received a patent for their invention of a classified communication system that was especially useful for submarines
- It was based on radio frequencies changed at irregular periods that were synchronized between the transmitter and receiver
- Spread Spectrum wireless devices

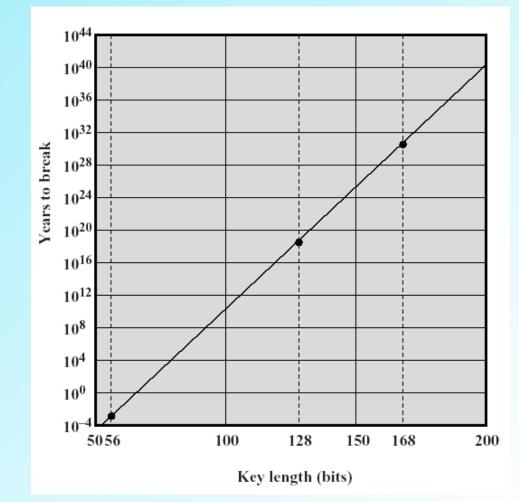
# **Feistel Cipher Structure**

- Horst Feistel of IBM, 1973
- Input is plaintext block of length 2w bits (usually 64) and a key K
- Block is divided into two halves, L<sub>0</sub> and R<sub>0</sub>
- Each round *i* has inputs L<sub>i-1</sub> and R<sub>i-1</sub>, derived from the previous round, along with subkey K<sub>i</sub>
- Substitution is performed on the left half of the data
- Round function F applied to right half and then XOR'd with left

#### **Feistel Cipher Structure**

Things to consider: -Block size (64) -Key Size (128) -# of rounds (16) -SubKey Generation -Round function




Hofstra University – Network Security Course, CSC290A

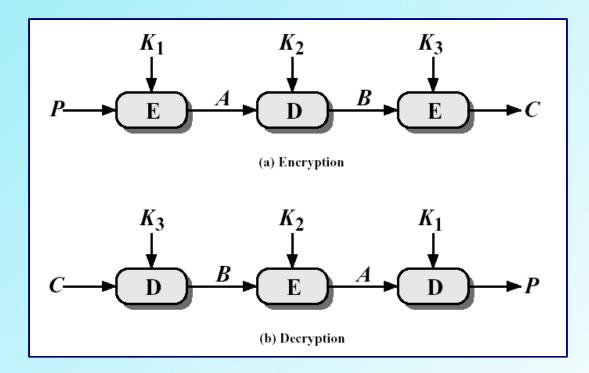
# Data Encryption Standard (DES)

- Adopted in 1977, reaffirmed for 5 years in 1994, by NBS(NIST)
- Plaintext is 64 bits (or blocks of 64 bits), key is 56 bits
- Plaintext goes through 16 iterations, each producing an intermediate value that is used in the next iteration
- DES is now too easy to crack to be a useful encryption method

# **Strength of DES**

- Concerns about the algorithm itself
- Concerns about 56bit key – this is the biggest worry




# **Strength of DES**

- DES is the most studied encryption algorithm in existence
- No one has succeeded in discovering a fatal weakness
- 1998, DES Cracker from Electronic Frontier Foundation, built for \$250,000
- Solution: Use a bigger key



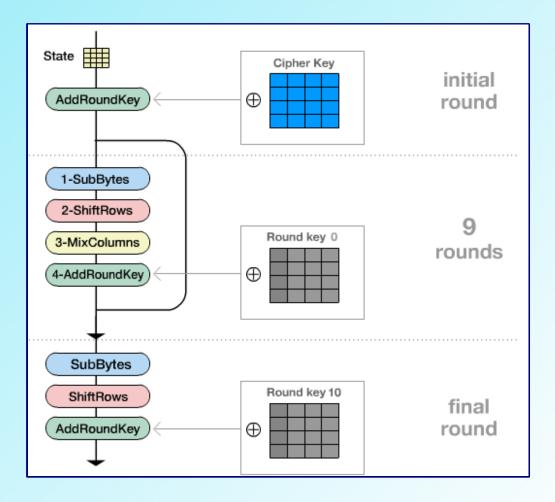
# **Triple DES**

#### $\boldsymbol{C} = \boldsymbol{\mathsf{E}}_{\boldsymbol{\kappa}_3} \left[ \boldsymbol{\mathsf{D}}_{\boldsymbol{\kappa}_2} \left[ \boldsymbol{\mathsf{E}}_{\boldsymbol{\kappa}_1} \left[ \boldsymbol{\boldsymbol{P}} \right] \right] \right]$



# **Triple DES**

- Alternative to DES, uses multiple encryption with DES and multiple keys
- With three distinct keys, 3DES has an effective key length of 168 bits, so it is essentially immune to brute force attacks
- Backward compatible with DES
- Principal drawback of DES is that the algorithm is relatively sluggish in software


#### Advanced Encryption Standard

- NIST call for proposals in 1997
- Nov, 2001 Rijndael [rain´dow]
- Symmetric block cipher (128 bits) and key lengths 128, 192, 256
- Two Flemish cryptographers: Joan Daeman and Vincent Rijmen

#### **Overview of AES**

#### **4Transformations:**

- Substitute Bytes
- Shift Rows
- Mix Columns
- Add Round Key



H

#### **AES URLS**

- http://csrc.nist.gov/CryptoToolkit/aes/rijnd
   NIST AES
- http://www.esat.kuleuven.ac.be/~rijmen/r
   Rijndael Home Page
- http://www.esat.kuleuven.ac.be/~rijmen/r
   Great Animation

#### IDEA International Data Encryption Algorithm

- 1991 by Swiss Federal Institute of Technology
- Uses 128-bit key
- Complex functions replace Sboxes
- Highly resistant to cryptanalysis
- Used in PGP

#### Blowfish

- 1993 by Bruce Schneier
- Easy to implement; high execution speed
- Variable key length up to 448 bits
- Used in a number of commercial applications

#### RC5

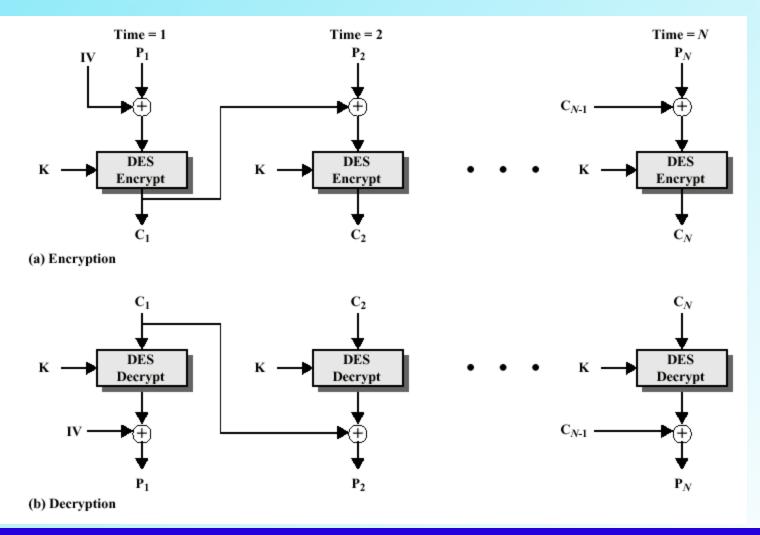
- 1994 by Ron Rivest, one of the inventors of RSA algorithm
- Defined in RFC2040
- Suitable for hardware and software
- Simple, fast, variable length key, low memory requirements
- High security

#### **CAST-128**

- 1997, Entrust Technologies
- RFC 2144
- Extensively reviewed
- Variable key length, 40-128 bits
- Used in PGP

#### **Conventional Encryption Algorithms**

| Algorithm  | Key Size (bits)  | Block Size (bits) | Number of Rounds | Applications                          |
|------------|------------------|-------------------|------------------|---------------------------------------|
| DES        | 56               | 64                | 16               | SET, Kerberos                         |
| Triple DES | 112 or 168       | 64                | 48               | Financial key management, PGP, S/MIME |
| AES        | 128, 192, or 256 | 128               | 10, 12, or 14    | Intended to replace DES and 3DES      |
| IDEA       | 128              | 64                | 8                | PGP                                   |
| Blowfish   | variable to 448  | 64                | 16               | Various software packages             |
| RC5        | variable to 2048 | 64                | variable to 255  | Various software packages             |


# Cipher Block Modes of Operation

- Block ciphers process one n-bit block of data at a time
- Break long amounts of plaintext into 64-bit blocks
- Use Electronic Code Book (ECB)
  - Each block of plaintext is encrypted using the same key
  - Entry for every possible 64-bit plaintext pattern
  - Block appears more than once, produce same ciphertext
  - Repeating patterns become a problem

## Cipher Block Chaining Mode

- Input to algorithm is the XOR of current plaintext block and preceding ciphertext block
- Repeating patterns are not exposed

#### Cipher Block Chaining Mode



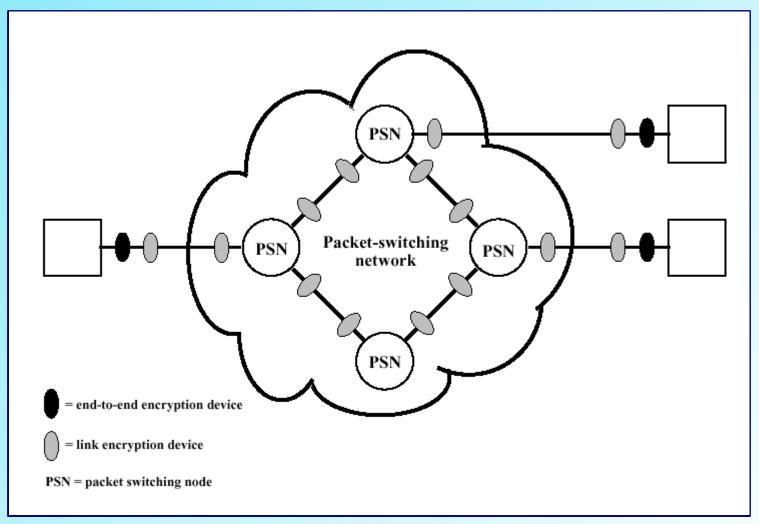
H

# **Cipher Feedback Mode**

- Convert DES into a stream cipher
- Eliminates need to pad a message
- Operates in real time
- Each character can be encrypted and transmitted immediately

#### Location of Encryption Devices

#### Link Encryption

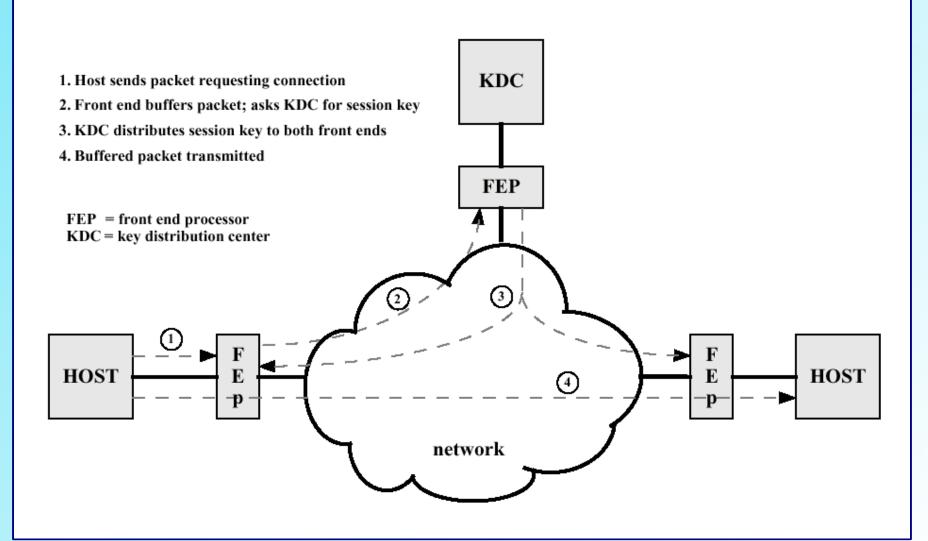

- Each vulnerable communications link is equipped on both ends with an encryption device
- All traffic over all communications links is secured
- Vulnerable at each switch

#### Location of Encryption Devices

#### • End-to-end Encryption

- The encryption process is carried out at the two end systems
- Encrypted data are transmitted unaltered across the network to the destination, which shares a key with the source to decrypt the data
- Packet headers cannot be secured

#### Location of Encryption Devices




H

# **Key Distribution**

- Both parties must have the secret key
- Key is changed frequently
- Requires either manual delivery of keys, or a third-party encrypted channel
- Most effective method is a Key Distribution Center (e.g. Kerberos)

# **Key Distribution**



Hofstra University – Network Security Course, CSC290A

# **Network Security**

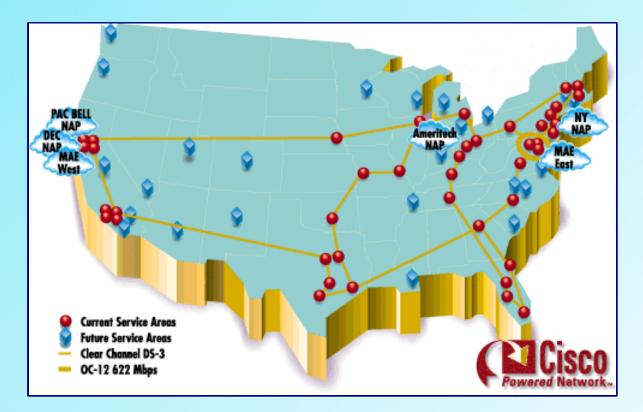
#### **DNS & Addressing**

## **Internet History**

- Evolved from ARPANet (Defense Department's Advanced Research Projects Agency Network)
- ARPANet was developed in 1969, and was the first packet-switching network
- Initially, included only four nodes: UCLA, UCSB, Utah, and SRI

# **NSF and the Internet**

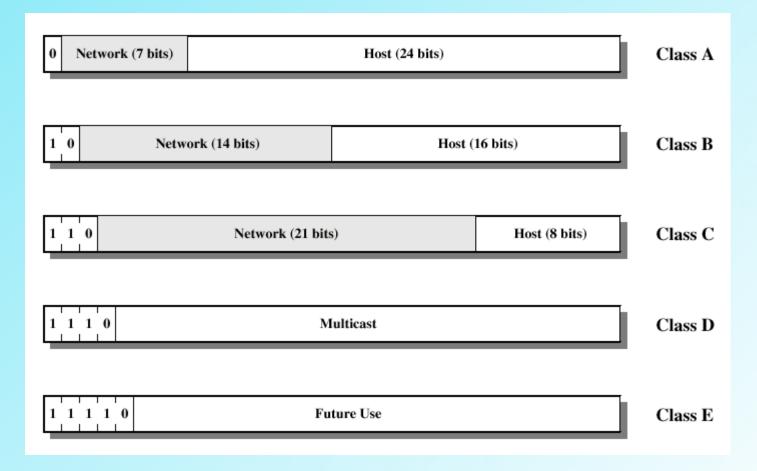
- In the 1980s, NSFNet extended packetswitched networking to non-ARPA organization; eventually replaced ARPANet
- Instituted Acceptable Use Policies to control use
- CIX (Commercial Internet eXchange) was developed to provide commercial internetworking


# The World Wide Web

- Concept proposed by Tim Berners-Lee in 1989, prototype WWW developed at CERN in 1991
- First graphical browser (Mosaic) developed by Mark Andreessen at NCSA
- Client-server system with browsers as clients, and a variety of media types stored on servers
- Uses HTTP (Hyper Text Transfer Protocol) for retrieving files

# Connecting to the Internet

- End users get connectivity from an ISP (Internet Service Provider)
  - Home users use dial-up, ADSL, cable modems, satellite, wireless
  - Businesses use dedicated circuits connected to LANs
- ISPs use "wholesalers" called network service providers and high speed (T-3 or higher) connections


#### US Internet Access Points



## **Internet Addressing**

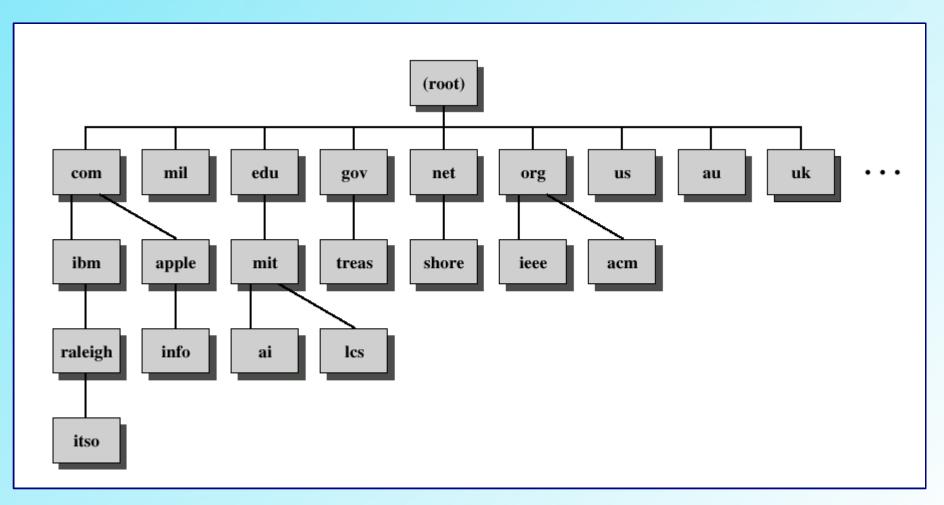
- 32-bit global Internet address
- Includes network and host identifiers
- Dotted decimal notation
  - 11000000 11100100 00010001
     00111001 (binary)
  - 192.228.17.57 (decimal)

## **Internet Addressing**



# **Network Classes**

- Class A: Few networks, each with many hosts
   All addresses begin with binary 0
   Range: 1-126
- Class B: Medium networks, medium hosts All addresses begin with binary 10 Range: 128-191
- Class C: Many networks, each with few hosts
   All addresses begin with binary 11
   Range: 192-223


# **Domain Name System**

- 32-bit IP addresses have two drawbacks
  - Routers can't keep track of every network path
  - Users can't remember dotted decimals easily
- Domain names address these problems by providing a name for each network domain (hosts under the control of a given entity)

#### **DNS Database**

- Hierarchical database containing name, IP address, and related information for hosts
- Provides name-to-address directory services

#### **Domain Tree**



# **Important URLs**

- http://www.networksolutions.com/whois/index.jhtml The original InterNIC. This site has the "whois" database
- http://www.arin.net
   American registry for Internet numbers. This site
   has a "whois" database for IP numbers
- http://www.net.princeton.edu/traceroute.htmlhttp:// www.tracert.com/Handy tools: traceroute, ping, nslookup, whois, dig

#### Homework

- Read Chapter Two
- Examine some sites using whois and traceroute for the domain name and the IP address. See how much you can find out about a site