Assignment 1

- Pick sun.com and one other site. Using whois and ARIN, get as much information as possible about the IP addressing, the DNS and the site (location, owner, etc.)
- Problems (p83): 3.5,c and 3.6
- Due next class March 6

Assignment 1, 3.5c

Assignment 1, 3.6

Plaintext
M=5
$$\longrightarrow$$
 = M ⁵ mod 35 = Ciphertext
10
KU = {e,n} = {5,35}

- This is done with brute force, starting with 1⁵, then 2⁵, etc. or, since n=35 we can easily determine the factors p=7 q=5 and then φ(n)=6x4=24, therefore d=5 since 5x5=1x24+1
- Remember that the security of RSA depends wholly on the problem of factoring large numbers

Network Security

Electronic Mail Security

Electronic Mail Security *Agenda:*

- Introduction to PGP
- 5 PGP Services
- Key Management
- Use of Trust
- Demo Of PGP In Use

Pretty Good Privacy

- 1991 Creation of a single person, Phil Zimmermann
- Provides confidentiality and authentication services for electronic mail and file storage applications

Phil Zimmermann

- Target of three year criminal investigation
- Gave software away to friend who put it on the Internet in 1991
- Intended to give individuals "the right to be let alone"
- US export restrictions violated – same class as munitions and nuclear weapons
- Government dropped the case in 1996

"PGP has spread like a prairie fire, fanned by countless people who fervently want their privacy restored in the information age"

- Phil Zimmermann, testifying before the US Senate, 1996

Pretty Good Privacy

- Selected best available cryptographic algorithms
- Integrated these algorithms into a general purpose application
- Source code and doc freely available on the net
- Agreement with company (Viacrypt) for low cost commercial version

Notation

- K_s = session key used in conventional encryption
- KR_a = private key of user A, used in public key encryption
- KU_a = public key of user A, used in public key encryption
- EP = public-key encryption
- DP = public-key decryption
- EC = conventional encryption
- DC = conventional decryption
- H = hash function
- || = concatenation
- Z = compression using ZIP algorithm
- R64= conversion to radix 64 ASCII format

Summary of 5 PGP Services

		Function	Algorithms Used	Description		
authentication		Digital signature	DSS/SHA or RSA/SHA	A hash code of a message is created using SHA-1. This message digest is encrypted using DSS or RSA with the sender's private key, and included with the message.		
confidentiality	*+	Message encryption	CAST or IDEA or Three-key Triple DES with Diffie-Hellman or RSA	A message is encrypted using CAST-128 or IDEA or 3DES with a one-time session key generated by the sender. The session key is encrypted using Diffie-Hellman or RSA with the recipient's public key, and included with the message.		
		Compression	ZIP	A message may be compressed, for storage or transmission, using ZIP.		
		Email compatibility	Radix 64 conversion	To provide transparency for email applications, an encrypted message may be converted to an ASCII string using radix 64 conversion.		
		Segmentation		To accommodate maximum message size limitations, PGP performs segmentation and reassembly.		

Recall One Way Hash Function

Less computation since message does not have to be encrypted

Hofstra University – Network Security Course, CSC290A

Recall SHA-1 Secure Hash Function

- Developed by NIST in 1995
- Input is processed in 512-bit blocks
- Produces as output a 160-bit message digest
- Every bit of the hash code is a function of every bit of the input
- Very secure so far!

Authentication

- 1. Sender creates a message
- 2. Generate a hash code with SHA-1
- Using sender's private key and RSA, encrypt the hash code and prepend to the message
- Receiver uses sender's public key to decrypt and recover the hash code
- Receiver generates a new hash code for the message and compares with the decrypted hash code. If matching, then message is authentic

PGP Cryptographic Functions

Recall Other Public Key Algorithms

- Digital Signature Standard (DSS) makes use of SHA-1 and presents a new digital signature algorithm (DSA)
- Only used for digital signatures not encryption or key exchange

Authentication

- Other alternatives can be used, e.g., DSS
- Detached signatures are supported
- Good for executables and multiparty signatures (legal contract)

Summary of 5 PGP Services

		Function	Algorithms Used	Description		
authenticatio	n≁	Digital signature	DSS/SHA or RSA/SHA	A hash code of a message is created using SHA-1. This message digest is encrypted using DSS or RSA with the sender's private key, and included with the message.		
confidentialit	} ≁	Message encryption	CAST or IDEA or Three-key Triple DES with Diffie-Hellman or RSA	A message is encrypted using CAST-128 or IDEA or 3DES with a one-time session key generated by the sender. The session key is encrypted using Diffie-Hellman or RSA with the recipient's public key, and included with the message.		
		Compression	ZIP	A message may be compressed, for storage or transmission, using ZIP.		
		Email compatibility	Radix 64 conversion	To provide transparency for email applications, an encrypted message may be converted to an ASCII string using radix 64 conversion.		
		Segmentation		To accommodate maximum message size limitations, PGP performs segmentation and reassembly.		

Recall CAST-128

- 1997, Entrust Technologies
- RFC 2144
- Extensively reviewed
- Variable key length, 40-128 bits
- Used in PGP

Recall Conventional Encryption Algorithms

Algorithm	Key Size (bits)	Block Size (bits)	Number of Rounds	Applications
DES	56	64	16	SET, Kerberos
Triple DES	112 or 168	64	48	Financial key management, PGP, S/MIME
AES	128, 192, or 256	128	10, 12, or 14	Intended to replace DES and 3DES
IDEA	128	64	8	PGP
Blowfish	variable to 448	64	16	Various software packages
RC5	variable to 2048	64	variable to 255	Various software packages

We have choices in PGP for confidentiality!

Confidentiality

- 1. Sender creates a message and random 128bit number for session key
- 2. Message encrypted using CAST-128 with the session key
- Session key encrypted with recipient's public key and prepended to the message
- 4. Receiver uses it's private key to decrypt and recover the session key
- Session key is used to decrypt the message

PGP Cryptographic Functions

Confidentiality

- Alternatives for conventional encryption: RSA or Diffie-Hellman (ElGamal)
- Conventional algorithms are much faster
- Each message is a one time independent event with its own key
- 768 ≤ key size ≤ 3072

Confidentiality & Authentication

- Both services can be used for the same message
- First, signature is generated for plaintext and prepended
- Message is encrypted with a session key
- Session key is encrypted with recipient's public key

PGP Cryptographic Functions

Summary of 5 PGP Services

		Function	Algorithms Used	Description		
authentication		Digital signature	DSS/SHA or RSA/SHA	A hash code of a message is created using SHA-1. This message digest is encrypted using DSS or RSA with the sender's private key, and included with the message.		
confidentialit	y →	Message encryption	CAST or IDEA or Three-key Triple DES with Diffie-Hellman or RSA	A message is encrypted using CAST-128 or IDEA or 3DES with a one-time session key generated by the sender. The session key is encrypted using Diffie-Hellman or RSA with the recipient's public key, and included with the message.		
	Compression		ZIP	A message may be compressed, for storage or transmission, using ZIP.		
		Email compatibility	Radix 64 conversion	To provide transparency for email applications, an encrypted message may be converted to an ASCII string using radix 64 conversion.		
		Segmentation	_	To accommodate maximum message size limitations, PGP performs segmentation and reassembly.		

Compression – Save Space

- PGP compresses (ZIP) the message after applying the signature but before encryption (default)
- Better to sign an uncompressed message
- PGP's compression algorithm is non-deterministic
- Security is greater if message is encrypted after compression
- Appendix 5A ZIP

PGP Cryptographic Functions

Summary of 5 PGP Services

	Function	Algorithms Used	Description		
authenticatio	Digital signature	DSS/SHA or RSA/SHA	A hash code of a message is created using SHA-1. This message digest is encrypted using DSS or RSA with the sender's private key, and included with the message.		
confidentiality	 Message encryption 	CAST or IDEA or Three-key Triple DES with Diffie-Hellman or RSA	A message is encrypted using CAST-128 or IDEA or 3DES with a one-time session key generated by the sender. The session key is encrypted using Diffie-Hellman or RSA with the recipient's public key, and included with the message.		
	Compression	ZIP	A message may be compressed, for storage or transmission, using ZIP.		
	Email compatibility	Radix 64 conversion	To provide transparency for email applications, an encrypted message may be converted to an ASCII string using radix 64 conversion.		
	Segmentation		To accommodate maximum message size limitations, PGP performs segmentation and reassembly.		

E-mail Compatibility

- Part or all of block consists of a stream of arbitrary 8-bit octets
- Many mail systems only allow ASCII text
- PGP converts raw binary stream to a stream of printable ASCII characters
- Radix-64 conversion 3 binary => 4 ASCII

Stream Of Printable ASCII Chars

----BEGIN PGP PUBLIC KEY BLOCK----

Version: 2.6.3i

mQBNAi23Dv0AAAECAMm6GNU3nqebKr3HW/fmrEhMlrFkwuZ6KHIYEat92nYfQIUj

lRLgj3TPHTRIMbswyTdaIJA7OvkSgxETLBCExX0ABRG0K0FuZHJ1YXMgUml1Z2Vy IDwxMDAxMTEuMzU0MEBjb21wdXNlcnZlLmNvbT4=

=8t7f

----END PGP PUBLIC KEY BLOCK-----

Generic Transmission Diagram

Hofstra University – Network Security Course, CSC290A

Generic Reception Diagram

Summary of 5 PGP Services

	Function	Algorithms Used	Description		
authenticatio <mark>n</mark>	 Digital signature 	DSS/SHA or RSA/SHA	A hash code of a message is created using SHA-1. This message digest is encrypted using DSS or RSA with the sender's private key, and included with the message.		
confidentialit y	 Message encryption 	CAST or IDEA or Three-key Triple DES with Diffie-Hellman or RSA	A message is encrypted using CAST-128 or IDEA or 3DES with a one-time session key generated by the sender. The session key is encrypted using Diffie-Hellman or RSA with the recipient's public key, and included with the message.		
	Compression	ZIP	A message may be compressed, for storage or transmission, using ZIP.		
	Email compatibility	Radix 64 conversion	To provide transparency for email applications, an encrypted message may be converted to an ASCII string using radix 64 conversion.		
	Segmentation		To accommodate maximum message size limitations, PGP performs segmentation and reassembly.		

Segmentation

- Maximum message length restrictions in e-mail
- PGP automatically subdivides a large message into segments small enough to mail separately
- PGP reassembles entire original block at the receiving end

Summary of 5 PGP Services

- Authentication
- Confidentiality
- Compression
- E-Mail Compatibility
- Segmentation

PGP Cryptographic Keys

- One-time Session Conventional Keys
- Public Keys
- Private Keys
- Passphrase-Based Conventional

Key Requirements

- A means of generating unpredictable session keys
- Allow users to have multiple public/private key pairs (need some kind of identity)
- Each PGP entity must maintain a file of its and its correspondents public/private pairs

Session Key Generation

- Random 128-bit numbers are generated using CAST-128
- Input is a stream of 128-bit randomized numbers based on keystroke input from the user
- Produces a sequence of session keys that is effectively unpredictable

Key Identifiers

- How does receiver know which public key to us?
- PGP assigns a key ID to each public key
- It has a high probability of being unique within a user ID – 64-bit

What Does A Transmitted Message Look Like?

- Message component actual data plus filename and timestamp
- Signature component timestamp, message digest, leading two octets of MD (checksum), Key ID of sender's public key
- Session key component session key plus ID of recipient's public key used to encrypt the session key

PGP Format

Recall Public Key Encryption

Recall Public Key Authentication

Key Rings

- PGP provides a pair of data structures at each node – pub/priv key pairs owned by node & public keys of other users
- Private-Key Ring and Public-Key Ring
- Can view the ring as a table each row represents one of the pub/priv key pairs

Key Ring Structure

Private Key Ring Key ID* Public Key Encrypted User ID* Timestamp Private Key ٠ ٠ ٠ Тi KUi mod 264 KUi E_{H(Pi)}[KR_i] User i ٠ ٠ ٠

Public Key Ring

Timestamp	Key ID*	Public Key	Owner Trust	User ID*	Key Legitimacy	Signature(s)	Signature Trust(s)
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
Ti	$\mathrm{KU}_{i} \ \mathrm{mod} \ 2^{64}$	KUi	trust_flagi	User i	trust_flagi		
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•

* = field used to index table

PGP Message Generation

PGP Message Reception

Public Key Management

- Physically get the key from B
- Verify a key by telephone
- Obtain B's public key from a mutually trusted individual D
- Obtain B's public key from a trusted certifying authority

Use of Trust

- Associated with each public key is a key legitimacy field – extent that PGP will trust that this is a valid public key
- Signature trust field degree PGP user trusts the signer to certify public keys
- Owner trust field degree to which this public key is trusted to sign other public-key certificates
- Contained in a structure referred to as a trust flag byte

Trust Flag Byte Contents

 (a) Trust Assigned to Public-Key Owner (appears after key packet; user-defined) 	(b) Trust Assigned to Public Key/User ID Pair (appears after User ID packet; computed by PGP)	(c) Trust Assigned to Signature (appears after signature packet; cached copy of OWNERTRUST for this signator)
OWNERTRUST Field —undefined trust —unknown user —usually not trusted to sign other keys —usually trusted to sign other keys —always trusted to sign other keys —this key is present in secret key ring (ultimate trust) BUCKSTOP bit —set if this key appears in secret key ring	KEYLEGIT Field —unknown or undefined trust —key ownership not trusted —marginal trust in key ownership —complete trust in key ownership WARNONLY bit —set if user wants only to be warned when key that is not fully validated is used for encryption	SIGTRUST Field —undefined trust —unknown user —usually not trusted to sign other keys —usually trusted to sign other keys —always trusted to sign other keys —always trusted to sign other keys —this key is present in secret key ring (ultimate trust) CONTIG bit —set if signature leads up a contiguous trusted certification path back to the ultimately trusted keyring owner

PGP Trust Model Example

H

Revoking Public Keys

- A user may wish to revoke his public key
- Reasons: compromise suspected or used too long or lost private key
- Owner issues a key revocation certificate, signed by the owner

Important URLs

- http://en.wikipedia.org/wiki/Pretty_Good_Privacy Good review of PGP, its history and current status
- http://www.pgp.com/ New home for PGP – This is the commercial version
- http://www.openpgp.org/ This is the site for OpenPGP

Important URLs

- http://www.npr.org/templates/story/story.php?storyId=5227744
 Story at NPR about how very few people use encryption
- http://www.clairewolfe.com/wolfesblog/00001945.html NPR story about how very few people use encryption, and then gives a tutorial on installing and using GNU Privacy Guard and Enigmail with the Thunderbird email program

Download PGP

- http://www.pgpi.org/download/gnupg/ Windows version is: GnuPG 1.2.2
- http://enigmail.mozdev.org/download.html Enigmail download

Pathetic Demo Attempt

Generating Keys

- Type: gpg -gen-key
- You should end up with something like this:

```
gpg: C:/Documents and Settings/vcosta/Application Data/gnupg\trustdb.gpg: trustd
b created
gpg: key 254870BB marked as ultimately trusted
public and secret key created and signed.
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2006-05-18
pub 1024D/254870BB 2006-03-19 [expires: 2006-05-18]
Key fingerprint = 6C4F 1C6E DF6C 5D93 FC82 3886 FC47 EB04 2548 70BB
uid Uincent J. Costa (PapaCosta) <ucosta@optonline.net>
sub 2048g/A98D696E 2006-03-19 [expires: 2006-05-18]
```

1

e-dick to add an object

Homework

- Read Chapter Five, Section 1, PGP
- S/MIME will be covered later
- Obtain PGP software and install it
- Try sending me an email (vcosta@optonline.net) and your public key

Reminder: Term Paper

- Due Monday, May 1
- Should be about 6-8 pages (9 or 10 font, single space)
- Suggested template: http://www.acm.org/sigs/pubs/proceed.
- This should be an opportunity to explore a selected area
- Send me your topic by March 20th

Reminder: Term Paper

Possible topics:

- Elliptic Curve Cryptography
- Cyber Forensics
- Digital Rights Management
- Security In Software Development
- Virtualization & Security
- Legal, Ethical Issues Around Security & Privacy
- Wireless/Mobile Security
- Phishing/Identity Theft
- Distributed DoS Attacks
- Electronic Cash
- Anti-Virus Software
- Any Topic Discussed In Class
- Programming Project Can Be Substituted If You Want