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Abstract

We prove that a group G has a word problem that is accepted by a deterministic
counter automaton with a weak inverse property if and only if G is virtually abelian.
We extend this result to larger classes of groups by considering a generalization of fi-
nite state automata, counter automata and pushdown automata. Natural corollaries
of our general result include a restricted version of Herbst’s classification of groups
for which the word problem is a one counter language and a new classification of
automata that accept context-free word problems.

1 Introduction

Let H be a group given by a finite presentation (X|R), and let W(H) be
the word problem for H; that is, let W(H) be the set of words in (X*)*
that represent the identity element in H. Several authors have explored the
relationship between the formal language classification of W (H) and the group
theoretic classification of H. It is well-known, for example, that W (H) is a
regular language if and only if H is finite [1]. In 1985 Muller and Schupp proved
that W (H) is a context-free language if and only if H has a free subgroup of
finite index [2,3]. In 1991 Herbst showed that W(H) is accepted by a one
counter automaton if and only if H has a cyclic subgroup of finite index [4].
For a summary of these and related results, see [5].

Our main result describes the kinds of groups for which the word problem is
accepted by a G-automaton. G-automata are natural generalizations of the
notions of finite state automata, counter automata and pushdown automata.
G-automata are referred to as generalized automata in [6] and as extended
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automata in [7]; they are also defined implicitly in [5]. Loosely, if G is a group,
a G-automaton over a finite alphabet X is an automaton in which each edge
is labeled by an ordered pair, the first coordinate of which is an element of G
and the second coordinate of which is an element of X* or the empty word. A
word w over X is accepted by Ag if there is a path from the initial vertex to a
terminal vertex for which the second coordinate is w and the first coordinate is
1. The inverse property is a weakened version of the assumption that for each
edge from o to 7 labeled x there is a corresponding edge from 7 to o labeled
271, Muller and Schupp refer to this latter property as being reversible. The
inverse property is a natural assumption when studying automata that accept
a word problem for a group; for example, if A5 is a deterministic G-automaton
accepting a word problem and if Ag has only one terminal vertex, then Ag
satisfies the inverse property. For precise definitions of all of these terms, see
Section 2.

Theorem 7 Let H be a finitely generated group. W (H) is accepted by a deter-
ministic G-automaton with the inverse property if and only if H has a finite
index subgroup K such that K is isomorphic to a subgroup of G.

In Section 5 we give an example showing that it is necessary to assume that
Ag is deterministic. It remains an open question as to whether or not it is
necessary to assume that Ag satisfies the inverse property.

In Section 4 we list many corollaries to Theorem 7. One corollary is a restricted
version of Herbst’s result concerning word problems which are one counter
languages [4].

Corollary 11 Let H be a finitely generated group. Then W (H) is accepted by
a deterministic one counter automaton with the inverse property if and only
of H has a cyclic subgroup of finite index.

The following corollary provides a version of Herbst’s result for the broader
class of counter automata.

Corollary 13 Let H be a finitely generated group. Then W (H) is accepted
by a deterministic counter automaton with the inverse property if and only if
H has a free abelian subgroup of finite indez.

Although our main result is a generalization of Herbst’s result, our techniques
are significantly different. Muller and Schupp first show that the Cayley graph
of a group with context free word problem has more than one end. They then
use Stallings Structure Theorem on finitely generated groups with more than
one end. Herbst, in turn, uses the Muller and Schupp result. In contrast, our
techniques are completely elementary. It appears that our assumption that
the G-automata satisfy the inverse property finesses the need for any deep
topology.



Combining our main result with that of Muller and Schupp leads to the fol-
lowing corollary concerning word problems which are context-free languages
[2,3].

Corollary 14 Let H be a finitely generated group. W (H) is context-free if
and only if there is a deterministic G-automaton Ag with the inverse property

and G free such that Ag accepts W(H).

2 Notation and Definitions

Let X be a finite set. We use X~ to denote a set of formal inverses to the
elements of X and we denote X U X~ by X*. The free monoid on X is
denoted by (X*)* and the free group on X by F(X). The empty word in
(X£)* is denoted by A. Let 6 be a homomorphism from F(X) onto a group
H. If w is an element of (X*)*, then we denote by w the image of w in H
under composition of § with the natural map from (X*)* to F(X). The word
problem W (H) is defined by

W(H)={we (X*)* : w=1}.

Let G be a group. We define a G-automaton Ag over X to be a finite directed
graph with a distinguished initial vertex, some distinguished terminal vertices,
and with edges labeled by G x (X*U{\}). If k is a positive integer, a Z*-
automaton is called a counter automaton, and a Z-automaton is a one-counter
automaton.

If p is a path in Ag, the element of G which is the first component of the
label of p is denoted g(p), and the element of (X*)* which is the second
component of the label of p is denoted by w(p). If p is the empty path, g(p)
is the identity element and w(p) is the empty word. If p and ¢ are paths such
that the final vertex of p is equal to the starting vertex of ¢, we denote by pq
the concatenation of the two paths. As the graphs are representing automata,
we shall refer to the vertices from now on as states.

A G-automaton over X is said to accept a word w € (X*)* if there is a path p
from the initial state to some terminal state such that w(p) = w and ¢g(p) = 1.
In this case p is called an accepting path. If Ag is a G-automaton, we denote
by L(Ag) the language of words accepted by Ag.

A G-automaton Ag is defined to be accessible if for every state o, there is a
path from the initial state to 0. Ag is trim if every state is visited along at
least one accepting path. Ag is complete if for every state o and every a € X ¥,
there is an edge from o labeled by a, i.e. w(e) = a for some edge e from o. Ag



is deterministic if there are no edges e such that w(e) is the empty word, and
if for each state o and for each z € X, there is at most one edge e leaving o
such that w(e) = .

We say that a G-automaton has the inverse property if for every path p from
terminal state oy to terminal state o, there exists a path ¢ from o, to o; with

w(g) = (w(p)) "

If Ag is deterministic and complete, we introduce further notation. If w is a
word in (X*)* and o is a state in Ag, we denote by p(o, w) the path starting
at o such that w(p) = w. We let p(w) denote p(o,w) where o is the initial
state.

In the proof, it will be useful to refer to the finite automaton over X obtained
from Ag by ignoring the first component of the edge labels; we call this the un-
derlying finite state automaton A of Ag, and we denote by L£(A) the language
accepted by A.

3 Preliminaries

Note that if Ag is a G-automaton over X that accepts the word problem for
a group H, then H must be X-generated (though, of course, G need not be).
Note also that Ag can be made accessible without changing the language of
words that it accepts by simply removing all states o for which there is no
path from the initial state to o. The following proposition shows that we can
also assume that Ag is complete and trim.

Proposition 1 If Ag is an accessible, deterministic G-automaton over X
such that L(Ag) = W(H) for some finitely generated group H then Ag is
complete and trim.

PROOF. Let 0 be a state of Az and a € X*. Since A is accessible, there is
a path p from the initial state to . Let w(p) = w. Then waa ‘w™ ! € W(H)
and is therefore accepted by Ag. Since Ag is deterministic, the only path ¢
from the initial state such that w(q) = w is p. It follows that there is an edge
e leaving o such that w(e) = a and that o is visited along the accepting path

plwaa tw™t). O
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Fig. 1. Proof of Lemma 3.
4 The Word Problem and G-automata

Let G be a group. We begin by studying groups H for which the word problem
is accepted by a G-automaton. Let X be a finite alphabet, and let H be a
homomorphic image of F(X). Let A be a deterministic G-automaton over
X such that L(Ag) = W(H) and Ag satisfies the inverse property.

Note that the initial state of Ag is terminal, since the empty word is in W (H).
Furthermore, if o is a terminal state of Ag, we may assume there exists a word
w € (X*)* such that p = p(w) ends at o and g(p) = 1: if not, then removing
o from the set of terminal states doesn’t change the language accepted.

Lemma 2 Let o be a terminal state of Ag. Let w be a word in (X*)* such
that p(o,w) ends in a terminal state o'. Then g(p(o’,w™")) = g(p(o, w))~".

PROOF. There exists a word u such that p(u) ends at o and g(p(u)) = 1.

Since vww™" is in W (H), it follows that g(p(c’,w™")) = g(p(o,w))~'. O

Lemma 3 Let oy and oy be terminal states of Aq, w € (X*)*. If p1 = p(o1, w)
ends at a terminal state, then py = p(o9,w) ends at a terminal state and

g(p1) = 9(p2).

PROOF. Let p; end at o3 and py end at o4. There exist vy, ve,v3 € L(Ag) =
W (H) such that p(v1), p(ve), and p(v3) end at o1, 09, and o3 respectively.
By the inverse property p(os,w™'v;') ends at the initial state. Then p; =
p(vsw™ vy tvyw) ends at o4. Since vsw vy 'vyw € W(H), o4 is a terminal
state.

Now g(p(v1)) = g(p(v2)) = g(p(vs)) = 1. Let g1 = g(p1), and let go = g(p2).
By Lemma 2 g(p(o3, w™")) = g7 . Since w(p) is in W(H), g(ps) = g7 ' g2 = 1
and g = go. O
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Fig. 2. Proof of Lemma 4.

Let A be the underlying finite state automaton of Ag. Let J = L(A), and let
K={w:weJ}.

Lemma 4 Let wy and wy be words in (X*)*. If wy = w, for wy € J, then
wy € J and g(p(wy)) = g(p(ws)) -

PROOF. Let p(w;) end at o; and p(wsy) end at oy. Since wy € J, 07 is a
terminal state. It follows that there exists a v € (X*)* such that p; = p(v)
ends at o1 and g(p;) = 1, i.e. v € L(Ag). Then,the inverse property implies
p(vwi') ends at the initial state and p(vw;'w,) ends at oy. Since vwy wy €
W(H) = L(Ag), 0y is a terminal state and wy € J. Let g; = g(p(w1)), and let
g2 = g(p(wy)). By Lemma 2, g(p(o1,w; ') = g; ' Thus 1 = g(p(vw; 'wy)) =
g1'go implies g; = go. O

Lemma 5 K is isomorphic to a subgroup of G.

PROOF. We begin by showing that K is a subgroup of H. Let wy, ws € J.
Since the empty word is in W (H), the initial state is also a terminal state.
Thus p(w;) and p(ws) both start and end at terminal states. It follows from
Lemma 3 that p(wjws) ends at a terminal state. Thus wyjwy € J and J is a
submonoid of (X*)*, showing K is closed under multiplication.

Let w € J and let p(w) end at 0. Then ¢ is a terminal state and p(o, w™") ends
at the initial state, also a terminal state. It follows once again from Lemma
3 that p(w™!) ends at a terminal state and w—! € J. Therefore, K is closed
under inverses.

Let p be the map from K into G that takes an element W to g(p(w)). p is
well defined by Lemma 4. That p is a homomorphism follows directly from
Lemma 3 and the fact that the initial state is also terminal. If w € K and
p(w) = 1, then w is accepted by Ag. Thus w € W(H) and w = 1. This shows
p is injective. 0O

Lemma 6 K has finite index in H.



PROOF. Let X be the set of states of Ag. We define a map 6 from ¥ to the
set of right cosets of K in H as follows: §(0) = Kw, where w is an element of
(X£)* such that p(w) ends at 0. We begin by showing that @ is well-defined.
Suppose there exist paths p; and ps both starting at the initial state and
ending at 0. Let ¢y be the path starting at o such that w(g,) = w(ps)~".
g2 ends at a terminal state. Therefore pigs also ends at a terminal state,
and w(piqa) = w(p1)w(q) = w(p1)w(p2)~' is an element of J. Therefore
Kw(p;) = Kw(ps) and 0 is well-defined. Since A is complete, 6 is onto. Since
Y is finite, the set of right cosets of K in H is also finite. O

Theorem 7 Let H be a finitely generated group. W (H) is accepted by a de-
terministic G-automaton with the inverse property if and only if H has a finite
index subgroup K such that K is isomorphic to a subgroup of G.

PROOF. Let Ag be a deterministic G-automaton with the inverse property
that accepts W(H). Let A be the underlying finite state automaton of Ag,
J=L(A),and K = {w : w € J} as above. It follows from the above results
that K has finite index in H and is isomorphic to a subgroup of G.

Let X be a finite alphabet, and let H be a homomorphic image of F(X).
Suppose that K is a finite index subgroup of H and that p is an embedding
of K into G. We construct a G-automaton over X that accepts W (H) by
constructing the usual coset automaton for K in H with respect to X, with
edge labels from G x X* as described below. Let hy, ..., h; be a set of right
coset representatives for K in H with h; = 1. The states of As are the right
cosets Khy,...,Khy. Kh; is the initial state and the unique terminal state.
There is an edge from Kh; to Kh,, if for some z in X*, Kh;T = Kh,,.
That edge is labeled (g, z) where g = p(h;Th,,'). This defines a deterministic
G-automaton over X.

To prove that L(Ag) = W(H) it suffices to show that if w is an element
of (X*)*, and if p(w) ends at the state Kh;, then W = p~'(g(p(w)))h;. We
proceed by induction on the length of w. If w is the empty word, the result is
clear. Suppose that w = w'x, where z is an element of X*. Let ¢’ = g(p(w')).
Suppose that p(w') ends at the state Kh; and that p(w) ends at state Khp,.
By the inductive hypothesis, we have that w’ = p~1(¢')h;. By construction,
there is an edge from Kh; to Kh,, labeled (g, ), where g = p(h;Th,'). We
want to show that w = p~'(¢'q)h,-

w=wT = p~ (¢ )T = p~ (¢ )hiThy hn = p™" (9 9) .

Note that As has only one terminal state and that Ag satisfies the inverse
property. O



The following corollary follows immediately from Theorem 7.

Corollary 8 Whether or not the word problem of a group H is accepted by
a deterministic G-automaton satisfying the inverse property is independent of
the presentation for H.

Notice that any deterministic G-automaton with only one terminal state which
accepts a word problem must satisfy the inverse property. Furthermore, exam-
ination of the proof of Theorem 7 shows that the G-automaton constructed to
accept W (H) has only one terminal state. For this reason, Theorem 7 could
be restated as follows.

Corollary 9 Let H be a finitely generated group. W (H) is accepted by a de-
terministic G-automaton with only one terminal state if and only if H has a
finite index subgroup K such that K is isomorphic to a subgroup of G.

Similarly, all of the corollaries which follow could be restated by replacing the
inverse property with the requirement that there be just one terminal state.

Corollary 10 Let G be a group. Let F be the class of groups H for which
W (H) is accepted by a deterministic G-automaton Ag satisfying the inverse
property. Then F is closed under the operations of isomorphism, finitely gen-
erated subgroups, and finite extensions.

F is a family of languages as defined by Gilman in [5]. The corollary then
follows from Gilman’s Theorem 6.4. A more direct proof is given below.

PROOF. Closure under isomorphism is immediate. Let H be a group for
which W (H) is accepted by a deterministic G-automaton satisfying the inverse
property. Then H has a finite index subgroup K that can be embedded in G.
Let L be a finitely generated subgroup of H. Then L N K has finite index in
L, and LN K embeds in G. Since L is finitely generated, by Theorem 7 W (L)
is accepted by a deterministic G-automaton satisfying the inverse property.

Let M be a finite extension of H. Then K is a finite index subgroup of M.
Since H is finitely generated, so is M, and by Theorem 7 W (M) is accepted
by a deterministic G-automaton satisfying the inverse property. 0O

The following is a restricted version of Herbst’s result concerning word prob-
lems which are one counter languages [4].

Corollary 11 Let H be a finitely generated group. Then W (H) is accepted by
a deterministic one counter automaton with the inverse property if and only
if H has a cyclic subgroup of finite index.



PROOF. Take G =Z. O

Let S be class of groups. A group H is virtually S if there exists a subgroup K
of finite index in H such that K € S. In the case where H is finitely generated
and § is closed under the operation of taking finitely generated subgroups, H
is virtually S if and only if there exists a normal subgroup K of finite index
in H such that K € §. We define an S-automaton to be a G-automaton for
some group G € S.

The following corollary follows immediately from Theorem 7.

Corollary 12 Let S be a class of groups that is closed under the operation of
taking finitely generated subgroups. Let H be a finitely generated group. W (H)
s accepted by a deterministic S-automaton with the inverse property if and
only if H is virtually S.

Corollary 13 Let H be a finitely generated group. W(H) is accepted by a
deterministic counter automaton with the inverse property if and only if H
has a free abelian subgroup of finite index.

PROOF. This follows from Corollary 12 with & the class of free abelian
groups. O

Corollary 14 Let H be a finitely generated group. W (H) is context-free if
and only if there exists a free group G and a deterministic G-automaton with
the inverse property such that L(Ag) = W (H).

PROOF. By Corollary 12 there exists a deterministic G-automaton, with G
free, satisfying the inverse property and accepting W (H) if and only if H is
virtually free. Muller and Schupp show that H is virtually free if and only if
its word problem is context free [2,3]. O

5 A Counterexample

In this section we show that determinism is a necessary hypothesis of Theo-
rem 7 by giving an example of groups G and H and a nondeterministic G-
automaton Ag such that Ag satisfies the inverse property and accepts W (H),
but H does not have a finite-index subgroup that can be embedded in G.
In this respect general G-automata accepting word problems differ from fi-
nite state automata, one-counter automata and pushdown automata that do



so since in the latter settings nondeterministic automata are no more pow-
erful than deterministic automata [2—4]. (Dassow and Mitrana showed that
there exist context-free languages which are not word problems that cannot
be accepted by deterministic G-automata [7].)

Let X = {z,y, z}, let F = F(X), the free group on three generators, and let
G=FxF.Let H= (X|v "'y loy,z 7127wz, y t271yz,), the free abelian
group on three generators. Note that H does not have a finite index subgroup

that can be embedded in G. We now construct a G-automaton Ag accepting
W(H).

Intuitively, we will use the edges of Ag to mimic the process of reading a word
and applying the relations of H. There will be edges which correspond to

e reading a letter, and positioning the cursor to the right of the letter just
read,

e moving the cursor left or right by one letter in the word that has been read
so far,

e inserting a relation of H or its inverse, and positioning the cursor to the
right of the inserted letters.

In this section we will distinguish between elements of (X*)* and elements of
F. Let 7 be the monoid homomorphism from (X*)* to F'. As in the previous
sections, let # be the natural group homomorphism from F' to H, and for w €
(X*)*, let W represent the image of w in H, so W = O(7(w)). If uy, ug, ..., u,
are elements of X*, and if w = wjuy...u,, then reverse(w) is defined to
be upty_q...u;. Note that for wy,we € (X*)* such that 7(w) = 7(ws),
T(reverse(w;)) = 1(reverse(ws,)). Therefore, for s € F, it makes sense to
define reverse(s) to be T(reverse(w)), where w is some word in (X*)* such
that 7(w) = s. We will construct Ag in such a way that there is a path in Ag
labeled ((s1, s2), w) if and only if W = §(s1reverse(ss)).

Ag has just one state, which is both the initial state and the terminal state.
For each u € X*, there is a loop labeled ((7(u), 1), u); these edges mimic the
action of reading a letter and positioning the cursor to the right of the letter
just read. For each u € X¥, there is also a loop labeled ((7(u),7(u™')), \),
where \ represents the empty word. These edges mimic the action of moving
the cursor right across a u or left across a u~!. Note that if an edge labeled
((7(u), 7(u"1)), ) is traversed when the cursor is neither to the right of a
u~! nor to the left of a u, then following this edge has the effect of inserting
uu~"! at the position of the cursor, and repositioning the cursor between u and
u 1. Finally, for each of the three relations r = o 'y loy, 2 'z taz, y 127 yz
in the presentation for H, there is a loop labeled ((7(r),1),A) and another
loop labeled ((7(r~1), 1), \); these loops mimic the action of inserting r or its

inverse at the position of the cursor and repositioning the cursor to the right

10



of the inserted letters.

Proposition 15 There is a path in Ag labeled ((s1, s2), w) if and only if W =
O(s1reverse(ss)).

PROOF. For the first direction, we proceed by induction on the length of
the path. When the path is empty, the conclusion is obvious. Suppose that
there is a path p labeled ((si,s2),w). Suppose by the inductive hypothesis
that W = f(sireverse(sq)). Suppose that e is an edge labeled ((¢1,%2),u). To
prove that wu = 6(sit1reverse(sats)), we consider the three kinds of loops
separately.

First suppose that e is labeled ((7(u),7(u1)), A), where u is an element of X.
Then

0(s17(u)reverse(sor(u 1)) = 0(s:7(w)T(u ) reverse(sy))
=0(s reverse(sy)) = w.

Next suppose that e is labeled ((7(r),1),\), where r € (X*)* is a relation of
H or its inverse. Then

O(s17(r)reverse(sy)) = (s reverse(ss)) = .

Finally suppose that e is labeled ((7(u),1),u), where u is an element of X.
Since H is abelian,

O(s17(u)reverse(ssy)) = 0(s1)0(reverse(sy))0(r(u)) = wa.

(It is possible to construct nonabelian counterexamples by introducing another
state, and thereby forcing the word to be read completely before applying
relations, but for our purposes, the abelian counterexample suffices.) This
completes the first direction of the proof.

For the converse, suppose that s; and s, are elements of F', that w is an
element of (X*)*, and that w = 0(s;reverse(sy)). We will construct a path
labeled ((s1, s2),w). First, follow edges of the type ((7(u),1),u) where u is
in X* to form a path labeled ((7(w),1),w). Intuitively, we have read the
word w, and applied the free reductions to get a reduced word v such that
7(v) = 7(w), and we have positioned the cursor the right of v. Let v; be the
freely reduced word representing s;. Then v can be rewritten as vyreverse(vs)
by inserting the relations or their inverses at suitably chosen locations in v
and by applying free reductions uu=' — )\ as needed. We mimic each such

11



rewriting step by following an appropriate sequence of edges: first follow edges
of the form ((7(u),7(u"')),\) to mimic the positioning of the cursor to the
desired location; then follow an edge of the form ((7(r),1),\) to mimic the
insertion of a relation or its inverse at the current location. (Mimicking free
reduction to the left and right of the current location happens automatically
since the first coordinate of an edge label is an element of F' x F.) The path
we have constructed is labeled ((s1, $2), w).

Thus, we have proved the proposition. O

The fact that Ag accepts W (H) follows immediately. Note that Ag satisfies
the inverse property.

6 Open Problem

We have assumed that our automaton satisfies the inverse property, but we
have not been able to establish that this hypothesis is necessary. Does there
exist a finitely presented group H = (X |R) and a deterministic G-automaton
A accepting W(H) such that H does not have a finite index subgroup K
that can be embedded in G?

7 Acknowledgments

We would like to thank Bob Gilman for suggesting this problem to us and for
helpful conversations along the way.

References

[1] A. Anisimov, F. Seifert, Zur algebraischen charateristik der durch kontext-
freie sprachen definierten gruppen, Elektronische Informationsverarbeitung und
Kybernetik 11 (1975) 675-702.

[2] D. Muller, P. Schupp, Groups, the theory of ends and context-free languages, J.
Computer and System Sciences 26 (1983) 295-310.

[3] D. Muller, P. Schupp, The theory of ends, pushdown automata, and second order
logic, Theoretical Computer Science 37 (1985) 51-75.

[4] T. Herbst, On subclass of context-free groups, Theoretical Informatics and
Applications 25 (1991) 255-272.

12



[5] R. H. Gilman, Formal languages and infinite groups, in: G. B. et. al. (Ed.),
Geometric and Computational Perspectives on Infinite Groups, Vol. 25 of
DIMACS Series in Discrete Mathematics and Computer Science, American
Mathematical Society, Providence, RI, 1996, pp. 27-51.

[6] S. Eilenberg, Automata, Languages and Machines, Academic Press, New York,
1974.

[7] J. Dassow, V. Mitrana, Finite automata over free groups, IJAC 10 (6) (2000)
725-737.

13



